Skip to main content
Log in

Paper-based substrates for surface-enhanced Raman spectroscopy sensing

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) has been recognized as one of the most sensitive analytical methods by adsorbing the target of interest onto a plasmonic surface. Growing attention has been directed towards the fabrication of various substrates to broaden SERS applications. Among these, flexible SERS substrates, particularly paper-based ones, have gained popularity due to their easy-to-use features by full contact with the sample surface. Herein, we reviewed the latest advancements in flexible SERS substrates, with a focus on paper-based substrates. Firstly, it begins by introducing various methods for preparing paper-based substrates and highlights their advantages through several illustrative examples. Subsequently, we demonstrated the booming applications of these paper-based SERS substrates in abiotic and biological matrix detection, with particular emphasis on their potential application in clinical diagnosis. Finally, the prospects and challenges of paper-based SERS substrates in broader applications are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fierro-Mercado PM, Hernández-Rivera SP (2012) Highly sensitive filter paper substrate for SERS trace explosives detection. Int J Spectrosc 2012:1–7. https://doi.org/10.1155/2012/716527

    Article  CAS  Google Scholar 

  2. Sallum LF, Soares FLF, Ardila JA, Carneiro RL (2014) Optimization of SERS scattering by Ag-NPs-coated filter paper for quantification of nicotinamide in a cosmetic formulation. Talanta 118:353–358. https://doi.org/10.1016/j.talanta.2013.10.039

    Article  CAS  PubMed  Google Scholar 

  3. Yang G, Fang X, Jia Q et al (2020) Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish. Microchim Acta 187. https://doi.org/10.1007/s00604-020-04262-2

  4. Rajapandiyan P, Yang J (2014) Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. J Raman Spectrosc 45:574–580. https://doi.org/10.1002/jrs.4502

    Article  CAS  Google Scholar 

  5. Vo-Dinh T (1995) SERS chemical sensors and biosensors: new tools for environmental and biological analysis. Sensors Actuators B Chem 29:183–189. https://doi.org/10.1016/0925-4005(95)01681-3

    Article  CAS  Google Scholar 

  6. Weng G, Yang Y, Zhao J et al (2018) Preparation and SERS performance of Au NP/paper strips based on inkjet printing and seed mediated growth: the effect of silver ions. Solid State Commun 272:67–73. https://doi.org/10.1016/j.ssc.2018.01.014

    Article  CAS  Google Scholar 

  7. Desmonda C, Kar S, Tai Y (2016) Formation of gold nanostructures on copier paper surface for cost effective SERS active substrate — effect of halide additives. Appl Surf Sci 367:362–369. https://doi.org/10.1016/j.apsusc.2016.01.154

    Article  CAS  Google Scholar 

  8. Zhang L, Liu J, Zhou G, Zhang Z (2020) Controllable in-situ growth of silver nanoparticles on filter paper for flexible and highly sensitive sers sensors for malachite green residue detection. Nanomaterials 10. https://doi.org/10.3390/nano10050826

  9. Godoy NV, García-Lojo D, Sigoli FA et al (2020) Ultrasensitive inkjet-printed based SERS sensor combining a high-performance gold nanosphere ink and hydrophobic paper. Sensors Actuators B Chem 320:128412. https://doi.org/10.1016/j.snb.2020.128412

    Article  CAS  Google Scholar 

  10. Zhao P, Liu H, Zhang L et al (2020) Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification. ACS Appl Mater Interfaces 12:8845–8854. https://doi.org/10.1021/acsami.9b20341

    Article  CAS  PubMed  Google Scholar 

  11. Moram SSB, Byram C, Soma VR (2020) Gold-nanoparticle- and nanostar-loaded paper-based SERS substrates for sensing nanogram-level Picric acid with a portable Raman spectrometer. Bull Mater Sci 43. https://doi.org/10.1007/s12034-019-2017-8

  12. Li S, Chen H, Liu X et al (2022) Nanocellulose as a promising substrate for advanced sensors and their applications. Int J Biol Macromol 218:473–487. https://doi.org/10.1016/j.ijbiomac.2022.07.124

    Article  CAS  PubMed  Google Scholar 

  13. Lin S, Lin X, Han S et al (2020) Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core–shell nanospheres for reliable quantitative SERS measurements. Anal Chim Acta 1108:167–176. https://doi.org/10.1016/j.aca.2020.02.034

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Ma J, Jiang P et al (2020) Large-scale flexible surface-enhanced Raman scattering (SERS) sensors with high stability and signal homogeneity. ACS Appl Mater Interfaces 12:45332–45341. https://doi.org/10.1021/acsami.0c13691

    Article  CAS  PubMed  Google Scholar 

  15. Restaino SM, White IM (2019) A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal Chim Acta 1060:17–29. https://doi.org/10.1016/j.aca.2018.11.057

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Zhang K, Zhao J et al (2016) A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147:493–500. https://doi.org/10.1016/j.talanta.2015.10.025

    Article  CAS  PubMed  Google Scholar 

  17. Xu F, Xuan M, Ben Z et al (2021) Surface enhanced Raman scattering analysis with filter-based enhancement substrates: a mini review. Rev Anal Chem 40:75–92. https://doi.org/10.1515/revac-2021-0126

    Article  CAS  Google Scholar 

  18. Villa JEL, Santos DP d, Poppi RJ (2016) Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Microchim Acta 183:2745–2752. https://doi.org/10.1007/s00604-016-1918-0

    Article  CAS  Google Scholar 

  19. Weng G, Feng Y, Zhao J et al (2019) Size dependent SERS activity of Ag triangular nanoplates on different substrates: glass vs paper. Appl Surf Sci 478:275–283. https://doi.org/10.1016/j.apsusc.2019.01.142

    Article  CAS  Google Scholar 

  20. Hasi WLJ, Lin X, Lou XT et al (2015) Chloride ion-assisted self-assembly of silver nanoparticles on filter paper as SERS substrate. Appl Phys A Mater Sci Process 118:799–807. https://doi.org/10.1007/s00339-014-8800-x

    Article  CAS  Google Scholar 

  21. Kihara S, Chan A, In E et al (2022) Detecting polystyrene nanoplastics using filter paper-based surface-enhanced Raman spectroscopy. RSC Adv 12:20519–20522. https://doi.org/10.1039/d2ra03395j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He S, Chua J, Tan EKM, Kah JCY (2017) Optimizing the SERS enhancement of a facile gold nanostar immobilized paper-based SERS substrate. RSC Adv 7:16264–16272. https://doi.org/10.1039/c6ra28450g

    Article  CAS  Google Scholar 

  23. Luo K, Wang K, Lim MC et al (2022) Synthesis of starch-based plasmonic core-shell microparticles for SERS applications. ACS Sustain Chem Eng 10:10268–10274. https://doi.org/10.1021/acssuschemeng.2c02092

    Article  CAS  Google Scholar 

  24. Sun H, Li X, Hu Z et al (2021) Hydrophilic-hydrophobic silver nanowire-paper based SERS substrate for in-situ detection of furazolidone under various environments. Appl Surf Sci 556:149748. https://doi.org/10.1016/j.apsusc.2021.149748

    Article  CAS  Google Scholar 

  25. Zhang S, Xu J, Liu Z et al (2022) Facile and scalable preparation of solution-processed succulent-like silver nanoflowers for 3D flexible nanocellulose-based SERS sensors. Surfaces and Interfaces 34:102391. https://doi.org/10.1016/j.surfin.2022.102391

    Article  CAS  Google Scholar 

  26. Sridhar K, Inbaraj BS, Chen BH (2022) An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. Chemosphere 301:134702. https://doi.org/10.1016/j.chemosphere.2022.134702

    Article  CAS  PubMed  Google Scholar 

  27. Zhou M, Wang Z, Xia D et al (2022) Hybrid nanoassembly with two-tier host-guest architecture and regioselective enrichment capacity for repetitive SERS detection. Sensors Actuators B Chem 369:132359. https://doi.org/10.1016/j.snb.2022.132359

    Article  CAS  Google Scholar 

  28. Lee CH, Tian L, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2:3429–3435. https://doi.org/10.1021/am1009875

    Article  CAS  PubMed  Google Scholar 

  29. Zhu A, Ali S, Xu Y et al (2022) SERS-based Au@Ag NPs solid-phase substrate combined with chemometrics for rapid discrimination of multiple foodborne pathogens. Spectrochim Acta - Part A Mol Biomol Spectrosc 270. https://doi.org/10.1016/j.saa.2021.120814

  30. Gomez-Caballero LF, Pichardo-Molina JL, Basurto-Islas G (2022) Cellulose dialysis membrane tubing doped with gold nanoparticles as SERS substrate. Mater Lett 313:131718. https://doi.org/10.1016/j.matlet.2022.131718

    Article  CAS  Google Scholar 

  31. Ying CC, Cheung CC, An CX et al (2021) High sensitivity enhancement of multi-shaped silver-nanoparticle-decorated hydrophilic PVDF-based SERS substrates using solvating pretreatment. Sensors Actuators B Chem 347:130614. https://doi.org/10.1016/j.snb.2021.130614

    Article  CAS  Google Scholar 

  32. Panwar K, Jassal M, Agrawal AK (2017) Ag–SiO 2 Janus particles based highly active SERS macroscopic substrates. Appl Surf Sci 411:368–373. https://doi.org/10.1016/j.apsusc.2017.03.105

    Article  CAS  Google Scholar 

  33. Trang TNQ, Vinh LQ, Doanh TT, Thu VTH (2021) Structure-adjustable colloidal silver nanoparticles on polymers grafted cellulose paper-based highly sensitive and selective SERS sensing platform with analyte enrichment function. J Alloys Compd 867:159158. https://doi.org/10.1016/j.jallcom.2021.159158

    Article  CAS  Google Scholar 

  34. Satheeshkumar E, Karuppaiya P, Sivashanmugan K et al (2017) Biocompatible 3D SERS substrate for trace detection of amino acids and melamine. Spectrochim Acta - Part A Mol Biomol Spectrosc 181:91–97. https://doi.org/10.1016/j.saa.2017.03.040

    Article  CAS  Google Scholar 

  35. Wang C, Zhou S, Tian Y et al (2022) Super-hydrophilic SERS sensor with both ultrahigh activity and exceptional 3D spatial uniformity for sensitive detection of toxic pollutants. Appl Surf Sci 603:154445. https://doi.org/10.1016/j.apsusc.2022.154445

    Article  CAS  Google Scholar 

  36. Li X, Zhou H, Wang L et al (2023) SERS paper sensor based on three-dimensional ZnO@Ag nanoflowers assembling on polyester fiber membrane for rapid detection of florfenicol residues in chicken. J Food Compos Anal 115:104911. https://doi.org/10.1016/j.jfca.2022.104911

    Article  CAS  Google Scholar 

  37. Lv P, Chen Z, Ma Z et al (2020) Ag nanoparticle ink coupled with graphene oxide cellulose paper: a flexible and tunable SERS sensing platform. Opt Lett 45:4208. https://doi.org/10.1364/ol.400131

    Article  CAS  PubMed  Google Scholar 

  38. Skwierczyńska M, Woźny P, Runowski M et al (2022) Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications. Carbohydr Polym 279. https://doi.org/10.1016/j.carbpol.2021.119010

  39. Sha X, Fang G, Cao G et al (2022) Qualitative and quantitative detection and identification of two benzodiazepines based on SERS and convolutional neural network technology. Analyst 147:5785–5795. https://doi.org/10.1039/d2an01277d

    Article  CAS  PubMed  Google Scholar 

  40. Zhang K, Zhao J, Xu H et al (2015) Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection. ACS Appl Mater Interfaces 7:16767–16774. https://doi.org/10.1021/acsami.5b04534

    Article  CAS  PubMed  Google Scholar 

  41. Shao J, Tong L, Tang S et al (2015) PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. ACS Appl Mater Interfaces 7:5391–5399. https://doi.org/10.1021/am508881k

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Q, Zhang Y, Chen H et al (2022) One-dimensional nanohybrids based on cellulose nanocrystals and their SERS performance. Carbohydr Polym 284:119140. https://doi.org/10.1016/j.carbpol.2022.119140

    Article  CAS  PubMed  Google Scholar 

  43. Chen H, Liu X, Zhang Q et al (2022) Ultrastable water-dispersible one-dimensional gold nanoparticles@cellulose nanocrystal. Colloids Surfaces A Physicochem Eng Asp 655:130147. https://doi.org/10.1016/j.colsurfa.2022.130147

    Article  CAS  Google Scholar 

  44. Ogundare SA, van Zyl WE (2018) Nanocrystalline cellulose as reducing- and stabilizing agent in the synthesis of silver nanoparticles: application as a surface-enhanced Raman scattering (SERS) substrate. Surfaces and Interfaces 13:1–10. https://doi.org/10.1016/j.surfin.2018.06.004

    Article  CAS  Google Scholar 

  45. Ogundare SA, van Zyl WE (2019) Amplification of SERS “hot spots” by silica clustering in a silver-nanoparticle/nanocrystalline-cellulose sensor applied in malachite green detection. Colloids Surfaces A Physicochem Eng Asp 570:156–164. https://doi.org/10.1016/j.colsurfa.2019.03.019

    Article  CAS  Google Scholar 

  46. Xian L, You R, Lu D et al (2020) Surface-modified paper-based SERS substrates for direct-droplet quantitative determination of trace substances. Cellulose 27:1483–1495. https://doi.org/10.1007/s10570-019-02855-6

    Article  CAS  Google Scholar 

  47. Dong J, Wang T, Xu E et al (2022) Flexible hydrophobic CFP@PDA@AuNPs stripes for highly sensitive SERS detection of methylene blue residue. Nanomaterials 12:1–13. https://doi.org/10.3390/nano12132163

    Article  CAS  Google Scholar 

  48. Batool A, Khan GA, Ahmed W (2022) Seed-mediated growth of highly concentrated silver nanoparticles on a flexible substrate forapplications in SERS-based trace detection. Vib Spectrosc 123:103438. https://doi.org/10.1016/j.vibspec.2022.103438

    Article  CAS  Google Scholar 

  49. Luo W, Chen M, Hao N et al (2019) In situ synthesis of gold nanoparticles on pseudo-paper films as flexible SERS substrate for sensitive detection of surface organic residues. Talanta 197:225–233. https://doi.org/10.1016/j.talanta.2018.12.099

    Article  CAS  PubMed  Google Scholar 

  50. Kang Y, Kim HJ, Lee SH, Noh H (2022) Paper-based substrate for a surface-enhanced Raman spectroscopy biosensing platform—a silver/chitosan nanocomposite approach. Biosensors 12. https://doi.org/10.3390/bios12050266

  51. Han L, Liu H, Zhang J et al (2022) Recyclable SERS monitoring of food quality based on the shrubby morphology of titania oxide-triggered electromagnetic “hotspots.”. Appl Surf Sci 604:154456. https://doi.org/10.1016/j.apsusc.2022.154456

    Article  CAS  Google Scholar 

  52. Hou M, Li N, Tian X et al (2023) Preparation of SERS active filter paper for filtration and detection of pesticides residue from complex sample. Spectrochim Acta - Part A Mol Biomol Spectrosc 285:121860. https://doi.org/10.1016/j.saa.2022.121860

    Article  CAS  Google Scholar 

  53. Cheng ML, Tsai BC, Yang J (2011) Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal Chim Acta 708:89–96. https://doi.org/10.1016/j.aca.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  54. Verma M, Naqvi TK, Tripathi SK et al (2021) Paper based low-cost flexible SERS sensor for food adulterant detection. Environ Technol Innov 24:102033. https://doi.org/10.1016/j.eti.2021.102033

    Article  CAS  Google Scholar 

  55. Das D, Senapati S, Nanda KK (2019) “rinse, Repeat”: an efficient and reusable SERS and catalytic platform fabricated by controlled deposition of silver nanoparticles on cellulose paper. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.9b02651

  56. Liu H, Zhao P, Wang Y et al (2020) Paper-based sandwich type SERS sensor based on silver nanoparticles and biomimetic recognizer. Sensors Actuators B Chem 313:127989. https://doi.org/10.1016/j.snb.2020.127989

    Article  CAS  Google Scholar 

  57. Liu H, Zhao P, Xiu W et al (2022) SERS paper slip based on 3D dendritic gold nanomaterials coupling with urchin-like nanoparticles for rapid detection of thiram. Sensors Actuators B Chem 355:131264. https://doi.org/10.1016/j.snb.2021.131264

    Article  CAS  Google Scholar 

  58. Weng G, Yang Y, Zhao J et al (2020) Improving the SERS enhancement and reproducibility of inkjet-printed Au NP paper substrates by second growth of Ag nanoparticles. Mater Chem Phys 253:123416. https://doi.org/10.1016/j.matchemphys.2020.123416

    Article  CAS  Google Scholar 

  59. Kim D, Kim J, Henzie J et al (2021) Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chem Eng J 419:129445. https://doi.org/10.1016/j.cej.2021.129445

    Article  CAS  Google Scholar 

  60. Yang Y, O’Riordan A, Lovera P (2022) Highly sensitive pesticide detection using electrochemically prepared Silver-Gum Arabic nanocluster SERS substrates. Sensors Actuators B Chem 364:131851. https://doi.org/10.1016/j.snb.2022.131851

    Article  CAS  Google Scholar 

  61. Yu WW, White IM (2010) Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630. https://doi.org/10.1021/ac102475k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thuy TT, Sharipov M, Lee Y et al (2020) Inkjet-based microreactor for the synthesis of silver nanoparticles on plasmonic paper decorated with chitosan nano-wrinkles for efficient on-site surface-enhanced Raman scattering (SERS). Nano Sel 1:499–509. https://doi.org/10.1002/nano.202000081

    Article  Google Scholar 

  63. Tay LL, Poirier S, Ghaemi A, Hulse J (2022) Inkjet-printed paper-based surface enhanced Raman scattering (SERS) sensors for the detection of narcotics. MRS Adv 7:190–196. https://doi.org/10.1557/s43580-022-00257-8

    Article  CAS  Google Scholar 

  64. Xiao G, Li Y, Shi W et al (2017) Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper. Appl Surf Sci 404:334–341. https://doi.org/10.1016/j.apsusc.2017.01.231

    Article  CAS  Google Scholar 

  65. Hoppmann EP, Yu WW, White IM (2013) Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63:219–224. https://doi.org/10.1016/j.ymeth.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  66. Yu WW, White IM (2013) Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138:1020–1025. https://doi.org/10.1039/c2an36116g

    Article  CAS  PubMed  Google Scholar 

  67. Yu WW, White IM (2013) Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. Analyst 138:3679–3686. https://doi.org/10.1039/c3an00673e

    Article  CAS  PubMed  Google Scholar 

  68. Fernandes T, Martins NCT, Fateixa S et al (2022) Dendrimer stabilized nanoalloys for inkjet printing of surface-enhanced Raman scattering substrates. J Colloid Interface Sci 612:342–354. https://doi.org/10.1016/j.jcis.2021.12.167

    Article  CAS  PubMed  Google Scholar 

  69. Qu LL, Li DW, Xue JQ et al (2012) Batch fabrication of disposable screen printed SERS arrays. Lab Chip 12:876–881. https://doi.org/10.1039/c2lc20926h

    Article  CAS  PubMed  Google Scholar 

  70. Qu LL, Song QX, Li YT et al (2013) Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Anal Chim Acta 792:86–92. https://doi.org/10.1016/j.aca.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  71. Ma Y, Wang Y, Luo Y et al (2018) Rapid and sensitive on-site detection of pesticide residues in fruits and vegetables using screen-printed paper-based SERS swabs. Anal Methods 10:4655–4664. https://doi.org/10.1039/c8ay01698d

    Article  CAS  Google Scholar 

  72. Cañamares MV, Garcia-Ramos JV, Gómez-Varga JD et al (2007) Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced Raman scattering analysis of dyes. Langmuir 23:5210–5215. https://doi.org/10.1021/la063445v

    Article  CAS  PubMed  Google Scholar 

  73. Yu CC, Chou SY, Tseng YC et al (2015) Single-shot laser treatment provides quasi-three-dimensional paper-based substrates for SERS with attomolar sensitivity. Nanoscale 7:1667–1677. https://doi.org/10.1039/c4nr05178e

    Article  CAS  PubMed  Google Scholar 

  74. Wu J, Xi J, Chen H et al (2022) SERS-active nanocellulose substrate via in-situ photochemical synthesis. Int J Biol Macromol 215:368–376. https://doi.org/10.1016/j.ijbiomac.2022.06.036

    Article  CAS  PubMed  Google Scholar 

  75. Jang W, Byun H, Kim JH (2020) Rapid preparation of paper-based plasmonic platforms for SERS applications. Mater Chem Phys 240:122124. https://doi.org/10.1016/j.matchemphys.2019.122124

    Article  CAS  Google Scholar 

  76. Siebe HS, Chen Q, Li X et al (2021) Filter paper based SERS substrate for the direct detection of analytes in complex matrices. Analyst 146:1281–1288. https://doi.org/10.1039/d0an02103b

    Article  CAS  PubMed  Google Scholar 

  77. Zhang W, Li B, Chen L et al (2014) Brushing, a simple way to fabricate SERS active paper substrates. Anal Methods 6:2066–2071. https://doi.org/10.1039/c4ay00046c

    Article  CAS  Google Scholar 

  78. Zhang L, Li X, Ong L et al (2015) Cellulose nanofibre textured SERS substrate. Colloids Surfaces A Physicochem Eng Asp 468:309–314. https://doi.org/10.1016/j.colsurfa.2014.12.056

    Article  CAS  Google Scholar 

  79. Zhang R, Bin XB, Liu XQ et al (2012) Highly efficient SERS test strips. Chem Commun 48:5913–5915. https://doi.org/10.1039/c2cc31604h

    Article  CAS  Google Scholar 

  80. Zhao F, Wang W, Zhong H et al (2021) Robust quantitative SERS analysis with relative Raman scattering intensities. Talanta 221:121465. https://doi.org/10.1016/j.talanta.2020.121465

    Article  CAS  PubMed  Google Scholar 

  81. Chen L, Ying B, Song P, Liu X (2019) A nanocellulose-paper-based SERS multiwell plate with high sensitivity and high signal homogeneity. Adv Mater Interfaces 6:1–10. https://doi.org/10.1002/admi.201901346

    Article  CAS  Google Scholar 

  82. Doanh TT, Duong T, Danh NC, et al (2020) Highly efficient SERS performance from the silver nanoparticles/graphene nanoribbons/cellulose paper. Sci Technol Dev J 23:First. 10.32508/stdj.v23i3.2390

  83. Liu S, Cui R, Ma Y et al (2020) Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS. Spectrochim Acta - Part A Mol Biomol Spectrosc 227. https://doi.org/10.1016/j.saa.2019.117664

  84. Marques AC, Pinheiro T, Morais M et al (2021) Bottom-up microwave-assisted seed-mediated synthesis of gold nanoparticles onto nanocellulose to boost stability and high performance for SERS applications. Appl Surf Sci 561:150060. https://doi.org/10.1016/j.apsusc.2021.150060

    Article  CAS  Google Scholar 

  85. Sun C, Zhang S, Wang J, Ge F (2022) Enhancement of SERS performance using hydrophobic or superhydrophobic cotton fabrics. Surfaces and Interfaces 28:101616. https://doi.org/10.1016/j.surfin.2021.101616

    Article  CAS  Google Scholar 

  86. Wang K, Qiu Z, Qin Y et al (2022) Preparation and SERS performance of silver nanowires arrays on paper by automatic writing method. Spectrochim Acta - Part A Mol Biomol Spectrosc 281:121580. https://doi.org/10.1016/j.saa.2022.121580

    Article  CAS  Google Scholar 

  87. Polavarapu L, La PA, Novikov SM et al (2014) Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 10:3065–3071. https://doi.org/10.1002/smll.201400438

    Article  CAS  PubMed  Google Scholar 

  88. Li H, Zhang H, Luo W et al (2022) Microcontact printing of gold nanoparticle at three-phase interface as flexible substrate for SERS detection of microRNA. Anal Chim Acta 1229:340380. https://doi.org/10.1016/j.aca.2022.340380

    Article  CAS  PubMed  Google Scholar 

  89. Saini RK, Sharma AK, Agarwal A, Prajesh R (2022) Near field FEM simulations of plasmonic gold nanoparticle based SERS substrate with experimental validation. Mater Chem Phys 287:126288. https://doi.org/10.1016/j.matchemphys.2022.126288

    Article  CAS  Google Scholar 

  90. Bharadwaj S, Pandey A, Yagci B et al (2018) Graphene nano-mesh-Ag-ZnO hybrid paper for sensitive SERS sensing and self-cleaning of organic pollutants. Chem Eng J 336:445–455. https://doi.org/10.1016/j.cej.2017.12.040

    Article  CAS  Google Scholar 

  91. Lee JC, Kim W, Choi S (2017) Fabrication of a SERS-encoded microfluidic paper-based analytical chip for the point-of-assay of wastewater. Int J Precis Eng Manuf - Green Technol 4:221–226. https://doi.org/10.1007/s40684-017-0027-9

    Article  Google Scholar 

  92. Sun J, Zhang Z, Liu C et al (2021) Continuous in situ portable SERS analysis of pollutants in water and air by a highly sensitive gold nanoparticle-decorated PVDF substrate. Anal Bioanal Chem 413:5469–5482. https://doi.org/10.1007/s00216-021-03531-0

    Article  CAS  PubMed  Google Scholar 

  93. Mai QD, Nguyen HA, Dinh NX et al (2023) Versatile and high performance in-paper flexible SERS chips for simple and in-situ detection of methylene blue in river water and thiram on apple skin. Talanta 253:124114. https://doi.org/10.1016/j.talanta.2022.124114

    Article  CAS  Google Scholar 

  94. Luo Y, Xing L, Hu C et al (2022) Facile synthesis of nanocellulose-based Cu2O/Ag heterostructure as a surface-enhanced Raman scattering substrate for trace dye detection. Int J Biol Macromol 205:366–375. https://doi.org/10.1016/j.ijbiomac.2022.02.102

    Article  CAS  PubMed  Google Scholar 

  95. Yu H, Guo D, Zhang H et al (2023) Facile fabrication of flexible AuNPs@CDA SERS substrate for enrichment and detection of thiram pesticide in water. Spectrochim Acta Part A Mol Biomol Spectrosc 285:121930. https://doi.org/10.1016/j.saa.2022.121930

    Article  CAS  Google Scholar 

  96. Hu F, Li Y, Zhang Y et al (2022) Flexible Ag NCs/CNFs film for colorimetric and SERS dual-mode ultrasensitive detection of mercury ions (II). Vib Spectrosc 118:103342. https://doi.org/10.1016/j.vibspec.2022.103342

    Article  CAS  Google Scholar 

  97. Zhang D, Pu H, Huang L, Sun DW (2021) Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: fundamentals and recent applications. Trends Food Sci Technol 109:690–701. https://doi.org/10.1016/j.tifs.2021.01.058

    Article  CAS  Google Scholar 

  98. Zhu J, Chen Q, Kutsanedzie FYH et al (2017) Highly sensitive and label-free determination of thiram residue using surface-enhanced Raman spectroscopy (SERS) coupled with paper-based microfluidics. Anal Methods 9:6186–6193. https://doi.org/10.1039/c7ay01637a

    Article  CAS  Google Scholar 

  99. Wang Q, Liu Y, Bai Y et al (2019) Superhydrophobic SERS substrates based on silver dendrite-decorated filter paper for trace detection of nitenpyram. Anal Chim Acta 1049:170–178. https://doi.org/10.1016/j.aca.2018.10.039

    Article  CAS  PubMed  Google Scholar 

  100. Liu C, Xu D, Dong X, Huang Q (2022) A review: research progress of SERS-based sensors for agricultural applications. Trends Food Sci Technol 128:90–101. https://doi.org/10.1016/j.tifs.2022.07.012

    Article  CAS  Google Scholar 

  101. Lee M, Oh K, Choi HK et al (2018) Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sensors 3:151–159. https://doi.org/10.1021/acssensors.7b00782

    Article  CAS  PubMed  Google Scholar 

  102. Chen J, Huang M, Kong L (2020) Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Appl Surf Sci 533:147454. https://doi.org/10.1016/j.apsusc.2020.147454

    Article  CAS  Google Scholar 

  103. Lin S, Hasi W, Han S et al (2020) A dual-functional PDMS-assisted paper-based SERS platform for the reliable detection of thiram residue both on fruit surfaces and in juice. Anal Methods 12:2571–2579. https://doi.org/10.1039/d0ay00483a

    Article  CAS  PubMed  Google Scholar 

  104. Xiong Z, Lin M, Lin H, Huang M (2018) Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Carbohydr Polym 189:79–86. https://doi.org/10.1016/j.carbpol.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  105. Sun L, Yu Z, Alsammarraie FK et al (2021) Development of cellulose nanofiber-based substrates for rapid detection of ferbam in kale by surface-enhanced Raman spectroscopy. Food Chem 347:129023. https://doi.org/10.1016/j.foodchem.2021.129023

    Article  CAS  PubMed  Google Scholar 

  106. Kwon G, Kim J, Kim D et al (2019) Nanoporous cellulose paper-based SERS platform for multiplex detection of hazardous pesticides. Cellulose 26:4935–4944. https://doi.org/10.1007/s10570-019-02427-8

    Article  CAS  Google Scholar 

  107. Fan J, Fang X, Zhang Y et al (2022) Quantitative SERS sensing mediated by internal standard Raman signal from silica nanoparticles in flexible polymer matrix. Spectrochim Acta - Part A Mol Biomol Spectrosc 278:121304. https://doi.org/10.1016/j.saa.2022.121304

    Article  CAS  Google Scholar 

  108. Sun M, Li B, Liu X et al (2019) Performance enhancement of paper-based SERS chips by shell-isolated nanoparticle-enhanced Raman spectroscopy. J Mater Sci Technol 35:2207–2212. https://doi.org/10.1016/j.jmst.2019.05.055

    Article  CAS  Google Scholar 

  109. Liou P, Nayigiziki FX, Kong F et al (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650. https://doi.org/10.1016/j.carbpol.2016.10.031

    Article  CAS  PubMed  Google Scholar 

  110. Mekonnen ML, Chen CH, Osada M et al (2020) Dielectric nanosheet modified plasmonic-paper as highly sensitive and stable SERS substrate and its application for pesticides detection. Spectrochim Acta - Part A Mol Biomol Spectrosc 225:117484. https://doi.org/10.1016/j.saa.2019.117484

    Article  CAS  Google Scholar 

  111. Bhardwaj K, Jaiswal A (2022) Plasmonic 3-D wrinkled polymeric shrink film-based SERS substrates for pesticide detection on real-world surfaces. Analyst 562–572. https://doi.org/10.1039/d2an01657e

  112. Xie J, Li L, Khan IM et al (2020) Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochim Acta - Part A Mol Biomol Spectrosc 231:118104. https://doi.org/10.1016/j.saa.2020.118104

    Article  CAS  Google Scholar 

  113. Jin X, Guo P, Guan P et al (2020) The fabrication of paper separation channel based SERS substrate and its recyclable separation and detection of pesticides. Spectrochim Acta - Part A Mol Biomol Spectrosc 240:118561. https://doi.org/10.1016/j.saa.2020.118561

    Article  CAS  Google Scholar 

  114. Zhu Y, Li M, Yu D, Yang L (2014) A novel paper rag as “D-SERS” substrate for detection of pesticide residues at various peels. Talanta 128:117–124. https://doi.org/10.1016/j.talanta.2014.04.066

    Article  CAS  PubMed  Google Scholar 

  115. Luo J, Wang Z, Li Y et al (2021) Durable and flexible Ag-nanowire-embedded PDMS films for the recyclable swabbing detection of malachite green residue in fruits and fingerprints. Sensors Actuators B Chem 347:130602. https://doi.org/10.1016/j.snb.2021.130602

    Article  CAS  Google Scholar 

  116. Wu J, Xi J, Chen H et al (2022) Flexible 2D nanocellulose-based SERS substrate for pesticide residue detection. Carbohydr Polym 277:118890. https://doi.org/10.1016/j.carbpol.2021.118890

    Article  CAS  PubMed  Google Scholar 

  117. Yu B, Mao Y, Li J et al (2022) Hydrophobic expanded graphite-covered support to construct flexible and stable SERS substrate for sensitive determination by paste-sampling from irregular surfaces. Spectrochim Acta - Part A Mol Biomol Spectrosc 282:121708. https://doi.org/10.1016/j.saa.2022.121708

    Article  CAS  Google Scholar 

  118. Hassan MM, Jiao T, Ahmad W et al (2021) Cellulose paper-based SERS sensor for sensitive detection of 2,4-D residue levels in tea coupled uninformative variable elimination-partial least squares. Spectrochim Acta - Part A Mol Biomol Spectrosc 248. https://doi.org/10.1016/j.saa.2020.119198

  119. Linh VTN, Moon J, Mun CW et al (2019) A facile low-cost paper-based SERS substrate for label-free molecular detection. Sensors Actuators B Chem 291:369–377. https://doi.org/10.1016/j.snb.2019.04.077

    Article  CAS  Google Scholar 

  120. Parnsubsakul A, Ngoensawat U, Wutikhun T et al (2020) Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Carbohydr Polym 235:115956. https://doi.org/10.1016/j.carbpol.2020.115956

    Article  CAS  PubMed  Google Scholar 

  121. Li D, Ma Y, Duan H et al (2018) Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosens Bioelectron 99:389–398. https://doi.org/10.1016/j.bios.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  122. Nilghaz A, Mahdi Mousavi S, Amiri A et al (2022) Surface-enhanced Raman spectroscopy substrates for food safety and quality analysis. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.2c00089

  123. Huang CC, Cheng CY, Lai YS (2020) Paper-based flexible surface enhanced Raman scattering platforms and their applications to food safety. Trends Food Sci Technol 100:349–358. https://doi.org/10.1016/j.tifs.2020.04.019

    Article  CAS  Google Scholar 

  124. Hu B, Pu H, Sun D-W (2021) Multifunctional cellulose based substrates for SERS smart sensing: principles, applications and emerging trends for food safety detection. Trends Food Sci Technol 110:304–320. https://doi.org/10.1016/j.tifs.2021.02.005

    Article  CAS  Google Scholar 

  125. Marques A, Veigas B, Araújo A et al (2019) Paper-based SERS platform for one-step screening of tetracycline in milk. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-54380-y

    Article  CAS  Google Scholar 

  126. Zhang C, You T, Yang N et al (2019) Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Food Chem 287:363–368. https://doi.org/10.1016/j.foodchem.2019.02.094

    Article  CAS  PubMed  Google Scholar 

  127. Chen M, Yang H, Rong L, Chen X (2016) A gas-diffusion microfluidic paper-based analytical device (μPAD) coupled with portable surface-enhanced Raman scattering (SERS): facile determination of sulphite in wines. Analyst 141:5511–5519. https://doi.org/10.1039/c6an00788k

    Article  CAS  PubMed  Google Scholar 

  128. Wu M, Li P, Zhu Q et al (2018) Functional paper-based SERS substrate for rapid and sensitive detection of Sudan dyes in herbal medicine. Spectrochim Acta - Part A Mol Biomol Spectrosc 196:110–116. https://doi.org/10.1016/j.saa.2018.02.014

    Article  CAS  Google Scholar 

  129. Lin S, Hasi WLJ, Lin X et al (2015) Rapid and sensitive SERS method for determination of Rhodamine B in chili powder with paper-based substrates. Anal Methods 7:5289–5294. https://doi.org/10.1039/c5ay00028a

    Article  CAS  Google Scholar 

  130. Kumar A, Santhanam V (2019) Paper swab based SERS detection of non-permitted colourants from dals and vegetables using a portable spectrometer. Anal Chim Acta 1090:106–113. https://doi.org/10.1016/j.aca.2019.08.073

    Article  CAS  PubMed  Google Scholar 

  131. Song Y, Ma Z, Fang H et al (2020) Au sputtered paper chromatography tandem Raman platform for sensitive detection of heavy metal ions. ACS Sensors 5:1455–1464. https://doi.org/10.1021/acssensors.0c00395

    Article  CAS  PubMed  Google Scholar 

  132. Wu L, Zhang W, Liu C et al (2020) Strawberry-like SiO2/Ag nanocomposites immersed filter paper as SERS substrate for acrylamide detection. Food Chem 328:127106. https://doi.org/10.1016/j.foodchem.2020.127106

    Article  CAS  PubMed  Google Scholar 

  133. Kim H, Trinh BT, Kim KH et al (2021) Au@ZIF-8 SERS paper for food spoilage detection. Biosens Bioelectron 179:113063. https://doi.org/10.1016/j.bios.2021.113063

    Article  CAS  PubMed  Google Scholar 

  134. Wang C, Liu B, Dou X (2016) Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sensors Actuators B Chem 231:357–364. https://doi.org/10.1016/j.snb.2016.03.030

    Article  CAS  Google Scholar 

  135. Zhuang J, Zhao Z, Lian K et al (2022) SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods. Biosens Bioelectron 207:114167. https://doi.org/10.1016/j.bios.2022.114167

    Article  CAS  PubMed  Google Scholar 

  136. Hou Y, Lv CC, Guo YL et al (2022) Recent advances and applications in paper-based devices for point-of-care testing. J Anal Test 6:247–273. https://doi.org/10.1007/s41664-021-00204-w

    Article  PubMed  PubMed Central  Google Scholar 

  137. Breuch R, Klein D, Siefke E et al (2020) Differentiation of meat-related microorganisms using paper-based surface-enhanced Raman spectroscopy combined with multivariate statistical analysis. Talanta 219:1–7. https://doi.org/10.1016/j.talanta.2020.121315

    Article  CAS  Google Scholar 

  138. Villa JEL, Quiñones NR, Fantinatti-Garboggini F, Poppi RJ (2019) Fast discrimination of bacteria using a filter paper–based SERS platform and PLS-DA with uncertainty estimation. Anal Bioanal Chem 411:705–713. https://doi.org/10.1007/s00216-018-1485-9

    Article  CAS  PubMed  Google Scholar 

  139. Lee HG, Choi W, Yang SY et al (2021) PCR-coupled paper-based surface-enhanced Raman scattering (SERS) sensor for rapid and sensitive detection of respiratory bacterial DNA. Sensors Actuators B Chem 326:128802. https://doi.org/10.1016/j.snb.2020.128802

    Article  CAS  Google Scholar 

  140. Hilton SH, Hall C, Nguyen HT et al (2020) Phenotypically distinguishing ESBL-producing pathogens using paper-based surface enhanced Raman sensors. Anal Chim Acta 1127:207–216. https://doi.org/10.1016/j.aca.2020.06.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xiang S, Ge C, Li S et al (2020) In situ detection of endotoxin in bacteriostatic process by SERS chip integrated array microchambers within bioscaffold nanostructures and SERS tags. ACS Appl Mater Interfaces 12:28985–28992. https://doi.org/10.1021/acsami.0c04897

    Article  CAS  PubMed  Google Scholar 

  142. Kim S, Ansah IB, Park JS et al (2022) Early and direct detection of bacterial signaling molecules through one-pot Au electrodeposition onto paper-based 3D SERS substrates. Sensors Actuators B Chem 358:131504. https://doi.org/10.1016/j.snb.2022.131504

    Article  CAS  Google Scholar 

  143. Burr DS, Fatigante WL, Lartey JA et al (2020) Integrating SERS and PSI-MS with dual purpose plasmonic paper substrates for on-site illicit drug confirmation. Anal Chem 92:6676–6683. https://doi.org/10.1021/acs.analchem.0c00562

    Article  CAS  PubMed  Google Scholar 

  144. Ponlamuangdee K, Hornyak GL, Bora T, Bamrungsap S (2020) Graphene oxide/gold nanorod plasmonic paper-a simple and cost-effective SERS substrate for anticancer drug analysis. New J Chem 44:14087–14094. https://doi.org/10.1039/d0nj02448a

    Article  CAS  Google Scholar 

  145. Wei W, Huang Q (2017) Rapid fabrication of silver nanoparticle-coated filter paper as SERS substrate for low-abundance molecules detection. Spectrochim Acta - Part A Mol Biomol Spectrosc 179:211–215. https://doi.org/10.1016/j.saa.2017.02.052

    Article  CAS  Google Scholar 

  146. Berger AG, Restaino SM, White IM (2017) Vertical-flow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal Chim Acta 949:59–66. https://doi.org/10.1016/j.aca.2016.10.035

    Article  CAS  PubMed  Google Scholar 

  147. Bolz A, Panne U, Rurack K, Buurman M (2016) Glass fibre paper-based test strips for sensitive SERS sensing. Anal Methods 8:1313–1318. https://doi.org/10.1039/c5ay03096j

    Article  CAS  Google Scholar 

  148. Han S, Zhang C, Sha X et al (2020) Effective SERS method for identification of dexmedetomidine hydrochloride in biological samples. Anal Methods 12:1662–1669. https://doi.org/10.1039/d0ay00019a

    Article  CAS  Google Scholar 

  149. Hassanain WA, Izake EL, Sivanesan A, Ayoko GA (2017) Towards interference free HPLC-SERS for the trace analysis of drug metabolites in biological fluids. J Pharm Biomed Anal 136:38–43. https://doi.org/10.1016/j.jpba.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  150. Sallum LF, Soares FLF, Ardila JA, Carneiro RL (2014) Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper. Spectrochim Acta - Part A Mol Biomol Spectrosc 133:107–111. https://doi.org/10.1016/j.saa.2014.04.198

    Article  CAS  Google Scholar 

  151. Lim WY, Goh CH, Thevarajah TM et al (2020) Using SERS-based microfluidic paper-based device (μPAD) for calibration-free quantitative measurement of AMI cardiac biomarkers. Biosens Bioelectron 147:111792. https://doi.org/10.1016/j.bios.2019.111792

    Article  CAS  PubMed  Google Scholar 

  152. Ngo YH, Then WL, Shen W, Garnier G (2013) Gold nanoparticles paper as a SERS bio-diagnostic platform. J Colloid Interface Sci 409:59–65. https://doi.org/10.1016/j.jcis.2013.07.051

    Article  CAS  PubMed  Google Scholar 

  153. Pan X, Li L, Lin H et al (2019) A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free SERS detection of serum bilirubin for diagnosis of jaundice. Biosens Bioelectron 145:111713. https://doi.org/10.1016/j.bios.2019.111713

    Article  CAS  PubMed  Google Scholar 

  154. Torul H, Çiftçi H, Çetin D et al (2015) Paper membrane-based SERS platform for the determination of glucose in blood samples. Anal Bioanal Chem 407:8243–8251. https://doi.org/10.1007/s00216-015-8966-x

    Article  CAS  PubMed  Google Scholar 

  155. Reokrungruang P, Chatnuntawech I, Dharakul T, Bamrungsap S (2019) A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sensors Actuators B Chem 285:462–469. https://doi.org/10.1016/j.snb.2019.01.090

    Article  CAS  Google Scholar 

  156. Lu D, Ran M, Liu Y et al (2020) SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer–associated serum biomarkers. Anal Bioanal Chem 412:7099–7112. https://doi.org/10.1007/s00216-020-02843-x

    Article  CAS  PubMed  Google Scholar 

  157. Frimpong R, Jang W, Kim JH, Driskell JD (2021) Rapid vertical flow immunoassay on AuNP plasmonic paper for SERS-based point of need diagnostics. Talanta 223:121739. https://doi.org/10.1016/j.talanta.2020.121739

    Article  CAS  PubMed  Google Scholar 

  158. Ma Y, Liu H, Chen Y et al (2020) Improved lateral flow strip based on hydrophilic–hydrophobic SERS substrate for ultra–sensitive and quantitative immunoassay. Appl Surf Sci 529:2–7. https://doi.org/10.1016/j.apsusc.2020.147121

    Article  CAS  Google Scholar 

  159. Hu SW, Qiao S, Bin PJ et al (2018) A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood. Talanta 179:9–14. https://doi.org/10.1016/j.talanta.2017.10.038

    Article  CAS  PubMed  Google Scholar 

  160. Li C, Liu Y, Zhou X, Wang Y (2020) A paper-based SERS assay for sensitive duplex cytokine detection towards the atherosclerosis-associated disease diagnosis. J Mater Chem B 8:3582–3589. https://doi.org/10.1039/c9tb02469g

    Article  CAS  PubMed  Google Scholar 

  161. Villa JEL, Poppi RJ (2016) A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst 141:1966–1972. https://doi.org/10.1039/c5an02398j

    Article  CAS  PubMed  Google Scholar 

  162. Gumustas A, Caglayan MG, Eryilmaz M et al (2018) Paper based lateral flow immunoassay for the enumeration of: Escherichia coli in urine. Anal Methods 10:1213–1218. https://doi.org/10.1039/c7ay02974h

    Article  CAS  Google Scholar 

  163. Ilhan H, Guven B, Dogan U et al (2019) The coupling of immunomagnetic enrichment of bacteria with paper-based platform. Talanta 201:245–252. https://doi.org/10.1016/j.talanta.2019.04.017

    Article  CAS  PubMed  Google Scholar 

  164. Tegegne WA, Su WN, Beyene AB et al (2021) Flexible hydrophobic filter paper-based SERS substrate using silver nanocubes for sensitive and rapid detection of adenine. Microchem J 168:106349. https://doi.org/10.1016/j.microc.2021.106349

    Article  CAS  Google Scholar 

  165. Han S, Zhang C, Lin S et al (2021) Sensitive and reliable identification of fentanyl citrate in urine and serum using chloride ion-treated paper-based SERS substrate. Spectrochim Acta - Part A Mol Biomol Spectrosc 251:119463. https://doi.org/10.1016/j.saa.2021.119463

    Article  CAS  Google Scholar 

  166. Park M, Jung H, Jeong Y, Jeong KH (2017) Plasmonic Schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 11:438–443. https://doi.org/10.1021/acsnano.6b06196

    Article  CAS  PubMed  Google Scholar 

  167. Kim WS, Shin JH, Park HK, Choi S (2016) A low-cost, monometallic, surface-enhanced Raman scattering-functionalized paper platform for spot-on bioassays. Sensors Actuators B Chem 222:1112–1118. https://doi.org/10.1016/j.snb.2015.08.030

    Article  CAS  Google Scholar 

  168. Kim HS, Kim HJ, Lee J et al (2021) Hand-held Raman spectrometer-based dual detection of creatinine and cortisol in human sweat using silver nanoflakes. Anal Chem 93:14996–15004. https://doi.org/10.1021/acs.analchem.1c02496

    Article  CAS  PubMed  Google Scholar 

  169. Mogera U, Guo H, Namkoong M et al (2022) Wearable plasmonic paper–based microfluidics for continuous sweat analysis. Sci Adv 8:1–12. https://doi.org/10.1126/sciadv.abn1736

    Article  CAS  Google Scholar 

  170. Kim W, Lee SH, Ahn YJ et al (2018) A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Biosens Bioelectron 111:59–65. https://doi.org/10.1016/j.bios.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  171. Ahn YJ, Gil YG, Lee YJ et al (2020) A dual-mode colorimetric and SERS detection of hydrogen sulfide in live prostate cancer cells using a silver nanoplate-coated paper assay. Microchem J 155:104724. https://doi.org/10.1016/j.microc.2020.104724

    Article  CAS  Google Scholar 

  172. Chen M, Zhang Z, Liu M et al (2017) In situ fabrication of label-free optical sensing paper strips for the rapid surface-enhanced Raman scattering (SERS) detection of brassinosteroids in plant tissues. Talanta 165:313–320. https://doi.org/10.1016/j.talanta.2016.12.072

    Article  CAS  PubMed  Google Scholar 

  173. Xie L, Zeng H, Zhu J et al (2022) State of the art in flexible SERS sensors toward label-free and onsite detection: from design to applications. Nano Res 15:4374–4394. https://doi.org/10.1007/s12274-021-4017-4

    Article  Google Scholar 

  174. Das A, Pant U, Cao C et al (2023) Fabrication of plasmonic nanopyramidal array as flexible SERS substrate for biosensing application. Nano Res 16:1132–1140. https://doi.org/10.1007/s12274-022-4745-0

    Article  CAS  Google Scholar 

  175. Zhou Q, Kim T (2016) Review of microfluidic approaches for surface-enhanced Raman scattering. Sensors Actuators B Chem 227:504–514. https://doi.org/10.1016/j.snb.2015.12.069

    Article  CAS  Google Scholar 

  176. Guo J, Zeng F, Guo J, Ma X (2020) Preparation and application of microfluidic SERS substrate: challenges and future perspectives. J Mater Sci Technol 37:96–103. https://doi.org/10.1016/j.jmst.2019.06.018

    Article  CAS  Google Scholar 

  177. Ding Y, Sun Y, Liu C et al (2023) SERS-based biosensors combined with machine learning for medical application**. ChemistryOpen 12. https://doi.org/10.1002/open.202200192

  178. Mahmoud AYF, Teixeira A, Aranda M et al (2023) Will data analytics revolution finally bring SERS to the clinic? TrAC Trends Anal Chem 117311. https://doi.org/10.1016/j.trac.2023.117311

Download references

Funding

This research was supported by the National Natural Science Foundation of China (21904068), the Natural Science Foundation of Jiangsu Province (BK20201351), Jiangsu Specially Appointed Professor program, Introduction of talent research start fund of Nanjing Medical University (NMUR2019007). Shanghai Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science Open subject) (KF202006). Chunhui Project Foundation of the Education Department of China (HZKY20220178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Cao or Ru-Jia Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Sun, Y., Yu, RJ. et al. Paper-based substrates for surface-enhanced Raman spectroscopy sensing. Microchim Acta 191, 8 (2024). https://doi.org/10.1007/s00604-023-06086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06086-2

Keywords

Navigation