Skip to main content

Advertisement

Log in

Development of a separation platform comprising magnetic beads combined with the CRISPR/Cas12a system enabling ultrasensitive and rapid detection of miRNA-21

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A separation platform has been developed mediated by a combination of magnetic beads and the CRISPR/Cas12a system to achieve ultrasensitive and rapid detection of miRNA-21 at a low level. In this system, with the assistance of an auxiliary probe, the target miRNA-21 can be specifically combined with three-stranded probes to initiate the SDR reaction. Abundant aptamer A3 was added to the solution that can activate the CRISPR/Cas12a system and initiate the trans-cleavage reaction to recover the fluorescence signal. Using magnetic beads to mediate the separation considerably greatly improves the signal conversion efficiency and detection sensitivity. At the 492 nm excitation wavelength, and 502–650 nm scan range, through analyzing the fluorescence peak intensity at 520 nm, the biosensor’s determination range and limit of detection is 8 fM-250 nM and 2.42 fM, respectively, and the RSD is 19.03–37.80. Compared with other biosensors, the biosensor developed exhibited superior performance and the signal recovered excellently in 1% human serum and the LOD is 12.12 fM. This method provides a novel highly sensitive scheme for detecting miRNA .

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 4357043:834–838

    Article  Google Scholar 

  2. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci 1037:2257–2261

    Article  Google Scholar 

  3. Hampton T (2010) Scientists Probe MicroRNAs’ Role in Cancer. JAMA 30311:1025–1025

    Article  Google Scholar 

  4. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 611:857–866

    Article  Google Scholar 

  5. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 10530:10513–10518

    Article  Google Scholar 

  6. Esquela-Kerscher A, Slack FJ (2006) Oncomirs — microRNAs with a role in cancer. Nat Rev Cancer 64:259–269

    Article  Google Scholar 

  7. Xiaolin W, Yong H, Bryan M, Bin G (2021) MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 704:784

    Google Scholar 

  8. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA Gene Expression Deregulation in Human Breast Cancer. Can Res 6516:7065–7070

    Article  Google Scholar 

  9. Lee J-W, Choi CH, Choi J-J, Park Y-A, Kim S-J, Hwang SY, Kim WY, Kim T-J, Lee J-H, Kim B-G, Bae D-S (2008) Altered MicroRNA Expression in Cervical Carcinomas. Clin Cancer Res 149:2535–2542

    Article  Google Scholar 

  10. Xu H, Zheng Y, Chen D, Cheng Y, Fang X, Zhong C, Huang X, Huang Q, Xu J, Xu J, Xue C (2023) Branch-Shaped Trapping Device Regulates Accelerated Catalyzed Hairpin Assembly and Its Application for MicroRNA In Situ Imaging. Anal Chem 952:1210–1218

    Google Scholar 

  11. Wang J, Sun J, Zhang J, Shen C, Zhang X, Xu J (2022) Engineered G-Quadruplex-Embedded Self-Quenching Probes Regulate Single Probe-Based Multiplex Isothermal Amplification to Light Road Lamp Probes for Sensitized Determination of microRNAs. Anal Chem 9410:4437–4445

    Article  Google Scholar 

  12. Xue T, Liang W, Li Y, Sun Y, Xiang Y, Zhang Y, Dai Z, Duo Y, Wu L, Qi K, Shivananju B N, Zhang L A-O, Cui X, Zhang H A-O, Bao Q A-O X. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. 2041–1723 (Electronic):

  13. Peng H, Newbigging AM, Reid MS, Uppal JS, Xu J, Zhang H, Le XC (2020) Signal Amplification in Living Cells: A Review of microRNA Detection and Imaging. Anal Chem 921:292–308

    Article  Google Scholar 

  14. Chang H, Lv J, Zhang H, Zhang B, Wei W, Qiao Y (2017) Photoresponsive colorimetric immunoassay based on chitosan modified AgI/TiO2 heterojunction for highly sensitive chloramphenicol detection. Biosens Bioelectron 87:579–586

    Article  CAS  PubMed  Google Scholar 

  15. Lai W, Wei Q, Xu M, Zhuang J, Tang D (2017) Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens Bioelectron 89:645–651

    Article  CAS  PubMed  Google Scholar 

  16. Lin X-C, Wang X-N, Liu L, Wen Q, Yu R-Q, Jiang J-H (2016) Surface Enhanced Laser Desorption Ionization of Phospholipids on Gold Nanoparticles for Mass Spectrometric Immunoassay. Anal Chem 8820:9881–9884

    Article  Google Scholar 

  17. Otieno BA, Krause CE, Jones AL, Kremer RB, Rusling JF (2016) Cancer Diagnostics via Ultrasensitive Multiplexed Detection of Parathyroid Hormone-Related Peptides with a Microfluidic Immunoarray. Anal Chem 8818:9269–9275

    Article  Google Scholar 

  18. Kurt H, Yüce M, Hussain B, Budak H (2016) Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens Bioelectron 81:280–286

    Article  CAS  PubMed  Google Scholar 

  19. Ngo HT, Gandra N, Fales AM, Taylor SM, Vo-Dinh T (2016) Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics. Biosens Bioelectron 81:8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oishi M, Sugiyama S (2016) An Efficient Particle-Based DNA Circuit System: Catalytic Disassembly of DNA/PEG-Modified Gold Nanoparticle-Magnetic Bead Composites for Colorimetric Detection of miRNA. Small 1237:5153–5158

    Article  Google Scholar 

  21. Li X, Chen B, He M, Hu B (2021) A dual-functional magnetic microsphere for ICP-MS quantification and fluorescence imaging of matrix metalloproteinase 2 in cell secretion. Anal Chim Acta 1161:338479

    Article  CAS  PubMed  Google Scholar 

  22. Zhou J, Cheng M, Zeng L, Liu W, Zhang T, Xing D (2016) Specific capture of the hydrolysate on magnetic beads for sensitive detecting plant vacuolar processing enzyme activity. Biosens Bioelectron 79:881–886

    Article  CAS  PubMed  Google Scholar 

  23. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 3155819:1709–1712

    Article  Google Scholar 

  24. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 3606387:439–444

    Article  Google Scholar 

  25. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Teng X, Zhang K, Deng R, Li J (2019) RNA Strand Displacement Responsive CRISPR/Cas9 System for mRNA Sensing. Anal Chem 916:3989–3996

    Article  Google Scholar 

  27. Marraffini LA, Sontheimer EJ (2008) CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA. Science 3225909:1843–1845

    Article  Google Scholar 

  28. Petri K, Pattanayak V (2018) SHERLOCK and DETECTR Open a New Frontier in Molecular Diagnostics. CRISPR J 13:209–211

    Article  Google Scholar 

  29. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 3606387:436–439

    Article  Google Scholar 

  30. Li S-Y, Cheng Q-X, Liu J-K, Nie X-Q, Zhao G-P, Wang J (2018) CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res 284:491–493

    Article  Google Scholar 

  31. Zhang D, Yan Y, Que H, Yang T, Cheng X, Ding S, Zhang X, Cheng W (2020) CRISPR/Cas12a-Mediated Interfacial Cleaving of Hairpin DNA Reporter for Electrochemical Nucleic Acid Sensing. ACS Sensors 52:557–562

    CAS  Google Scholar 

  32. Yuan C, Tian T, Sun J, Hu M, Wang X, Xiong E, Cheng M, Bao Y, Lin W, Jiang J, Yang C, Chen Q, Zhang H, Wang H, Wang X, Deng X, Liao X, Liu Y, Wang Z, Zhang G, Zhou X (2020) Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Anal Chem 925:4029–4037

    Article  Google Scholar 

  33. Li H, Zhao W, Pu J, Zhong S, Wang S, Yu R (2022) Combining functional hairpin probes with disordered cleavage of CRISPR/Cas12a protease to screen for B lymphocytic leukemia. Biosens Bioelectron 201:113941

    Article  CAS  PubMed  Google Scholar 

  34. Zhao W, Liu M, Li H, Wang S, Tang S, Kong R-M, Yu R (2019) Ultra-sensitive label-free electrochemical detection of the acute leukaemia gene Pax-5a based on enzyme-assisted cycle amplification. Biosens Bioelectron 143:111593

    Article  CAS  PubMed  Google Scholar 

  35. Shen Z-F, Li F, Jiang Y-F, Chen C, Xu H, Li C-C, Yang Z, Wu Z-S (2018) Palindromic Molecule Beacon-Based Cascade Amplification for Colorimetric Detection of Cancer Genes. Anal Chem 905:3335–3340

    Article  Google Scholar 

  36. Shen H, Qileng A, Yang H, Liang H, Zhu H, Liu Y, Lei H, Liu W (2021) “Dual-Signal-On” Integrated-Type Biosensor for Portable Detection of miRNA: Cas12a-Induced Photoelectrochemistry and Fluorescence Strategy. Anal Chem 9334:11816–11825

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No: 22164011, 21565015, 21663014), and the State Key Laboratory of Chemical Biosensing & Chemometrics.

Funding

National Natural Science Foundation of China,22164011,hongbo li

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 916 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, H., Zhao, W. et al. Development of a separation platform comprising magnetic beads combined with the CRISPR/Cas12a system enabling ultrasensitive and rapid detection of miRNA-21. Microchim Acta 190, 458 (2023). https://doi.org/10.1007/s00604-023-06038-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06038-w

Keywords

Navigation