Skip to main content

Advertisement

Log in

Versatile MXene composite probe–mediated homogeneous electrochemiluminescence biosensor with integrated signal transduction and near-infrared modulation strategy for concanavalin A detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Based on the highly specific interaction between concanavalin A (Con A) and glucose (Glu), a competitive electrochemiluminescence (ECL) biosensor was constructed for ultrasensitive detection of Con A. Nanocomposites with excellent electrocatalytic and photothermal properties were obtained by covalently bonding zinc oxide quantum dots (ZnO QDs) to vanadium carbide MXene (V2C MXene) surfaces. The modification of ZnO QDs hinders the aggregation of V2C MXene and increases the catalytic activity of oxygen reduction reaction, thus amplifying the luminol cathodic emission. In addition, the excellent photothermal performance of the V2C MXene-ZnO QDs can convert light energy into heat energy under the irradiation of 808 nm near infrared laser, thus increasing the temperature of the reaction system and accelerating the electron transfer process to realize the synergistic amplified homogeneous ECL system. This innovative work not only enriches the fundamental research on multifunctional MXene nanomaterials for biosensing, but also provides an effective strategy for ECL signal amplification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sharon N, Lis H (1972) Lectins: Cell-Agglutinating and Sugar-Specific Proteins: Lectins provide new tools for studying polysaccharides, glycoproteins, and cell surfaces, and for cancer research. Science. 177(4053):949-959. https://doi.org/10.1126/science.177.4053.949

  2. Becker JW, Reeke GN, Cunningham BA, Edelman GM (1976) New evidence on the location of the saccharide-binding site of concanavalin A. Nature 259(5542):406–409. https://doi.org/10.1038/259406a0

    Article  CAS  PubMed  Google Scholar 

  3. Jang H, Lee C, Hwang Y, Lee SJ (2021) Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences. Dalton Trans 50:17817–17831. https://doi.org/10.1039/d1dt03501k

    Article  CAS  PubMed  Google Scholar 

  4. Sharon N, Lis H (1989) Lectins as cell recognition molecules. Science 246(4927):227–234. https://doi.org/10.1126/science.2552581

    Article  CAS  PubMed  Google Scholar 

  5. Heymann F, Hamesch K, Weiskirchen R, Tacke F (2015) The concanavalin A model of acute hepatitis in mice. Lab Anim 49(1_suppl):12–20. https://doi.org/10.1177/0023677215572841

    Article  CAS  PubMed  Google Scholar 

  6. Huang CF, Yao GH, Liang RP, Qiu JD (2013) Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosens Bioelectron 50:305–310. https://doi.org/10.1016/j.bios.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  7. Wang T-H, Lee M-H, Su N-W (2009) Screening of lectins by an enzyme-linked adsorbent assay. Food Chem 113:1218–1225. https://doi.org/10.1016/j.foodchem.2008.08.024

    Article  CAS  Google Scholar 

  8. Gao Y, Wu Y, Di J (2017) Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 173:207–212. https://doi.org/10.1016/j.saa.2016.09.023

    Article  CAS  PubMed  Google Scholar 

  9. Sha Q, Guan R, Su H, Zhang L, Liu B-F, Hu Z, Liu X (2020) Carbohydrate-protein template synthesized high mannose loading gold nanoclusters: a powerful fluorescence probe for sensitive Concanavalin A detection and specific breast cancer cell imaging. Talanta 218:121130. https://doi.org/10.1016/j.talanta.2020.121130

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Ou X, Lu Q, Chen S, Wei S (2014) A biorecognition system for concanavalin a using a glassy carbon electrode modified with silver nanoparticles, dextran and glucose oxidase. Microchimica Acta 182:797–803. https://doi.org/10.1007/s00604-014-1390-7

    Article  CAS  Google Scholar 

  11. Sun C, Shen Y, Zhang Y, Du Y, Peng Y, Xie Q (2023) Sandwich photoelectrochemical biosensing of concanavalin A based on CdS/AuNPs/NiO Z-scheme heterojunction and lectin-sugar binding. Talanta 253:123882. https://doi.org/10.1016/j.talanta.2022.123882

    Article  CAS  PubMed  Google Scholar 

  12. Fang C, Li H, Yan J, Guo H, Yifeng T (2017) Progress of the electrochemiluminescence biosensing strategy for clinical diagnosis with luminol as the sensing probe. ChemElectroChem 4:1587–1593. https://doi.org/10.1002/celc.201700465

    Article  CAS  Google Scholar 

  13. Liu X, Qi W, Gao W, Liu Z, Zhang W, Gao Y, Xu G (2014) Remarkable increase in luminol electrochemiluminescence by sequential electroreduction and electrooxidation. Chem Commun (Camb) 50:14662–14665. https://doi.org/10.1039/c4cc06633b

    Article  CAS  PubMed  Google Scholar 

  14. Zhuo Y, Wang HJ, Lei YM, Zhang P, Liu JL, Chai YQ, Yuan R (2018) Electrochemiluminescence biosensing based on different modes of switching signals. Analyst 143:3230–3248. https://doi.org/10.1039/c8an00276b

    Article  CAS  PubMed  Google Scholar 

  15. Wang JX, Zhuo Y, Zhou Y, Wang HJ, Yuan R, Chai YQ (2016) Ceria doped zinc oxide nanoflowers enhanced luminol-based electrochemiluminescence immunosensor for amyloid-beta detection. ACS Appl Mater Interfaces 8:12968–12975. https://doi.org/10.1021/acsami.6b00021

    Article  CAS  PubMed  Google Scholar 

  16. Wu FF, Zhou Y, Zhang H, Yuan R, Chai YQ (2018) Electrochemiluminescence peptide-based biosensor with hetero-nanostructures as coreaction accelerator for the ultrasensitive determination of tryptase. Anal Chem 90:2263–2270. https://doi.org/10.1021/acs.analchem.7b04631

    Article  CAS  PubMed  Google Scholar 

  17. Zou R, Xie R, Peng Y, Guan W, Lin Y, Lu C (2022) Ag–O–Co interface modulation-amplified luminol cathodic electrogenerated chemiluminescence. Anal Chem 94(11):4813–4820. https://doi.org/10.1021/acs.analchem.2c00050

    Article  CAS  PubMed  Google Scholar 

  18. Gaillard F, Sung YE, Bard AJ (1999) Hot electron generation in aqueous solution at oxide-covered tantalum electrodes. Reduction of methylpyridinium and electrogenerated chemiluminescence of Ru(bpy)(3)(2+). J Phys Chem B 103:667–674. https://doi.org/10.1021/jp982821k

    Article  CAS  Google Scholar 

  19. Kankare J, Fäldén K, Kulmala S, Haapakka K (1992) Cathodically induced time-resolved lanthanide(III) electroluminescence at stationary aluminium disc electrodes. Anal Chim Acta 256(1):17–28. https://doi.org/10.1016/0003-2670(92)85320-6

    Article  CAS  Google Scholar 

  20. Wang X, Shang L, Zhang W, Jia LP, Ma RN, Jia WL, Wang HS (2019) An ultrasensitive luminol cathodic electrochemiluminescence probe with highly porous Pt on ionic liquid functionalized graphene film as platform for carcinoembryonic antigen sensing. Biosens Bioelectron 141:111436. https://doi.org/10.1016/j.bios.2019.111436

    Article  CAS  PubMed  Google Scholar 

  21. Haghighi B, Tavakoli A, Bozorgzadeh S (2015) Cathodic electrogenerated chemiluminescence of luminol on glassy carbon electrode modified with cobalt nanoparticles decorated multi-walled carbon nanotubes. Electrochim Acta 154:259–265. https://doi.org/10.1016/j.electacta.2014.11.175

    Article  CAS  Google Scholar 

  22. Cao Y, Yuan R, Chai Y, Liu H, Liao Y, Zhuo Y (2013) Amplified cathodic electrochemiluminescence of luminol based on Pd and Pt nanoparticles and glucose oxidase decorated graphene as trace label for ultrasensitive detection of protein. Talanta 113:106–112. https://doi.org/10.1016/j.talanta.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  23. Xu S, Liu Y, Wang T, Li J (2011) Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem 83:3817–3823. https://doi.org/10.1021/ac200237j

    Article  CAS  PubMed  Google Scholar 

  24. Ho DH, Choi YY, Jo SB, Myoung J-M, Cho JH (2021) Sensing with MXenes: progress and prospects. Adv Mater 33(47):2005846. https://doi.org/10.1002/adma.202005846

    Article  CAS  Google Scholar 

  25. Li K, Liang M, Wang H, Wang X, Huang Y, Coelho J, Pinilla S, Zhang Y, Qi F, Nicolosi V, Xu Y (2020) 3D MXene architectures for efficient energy storage and conversion. Adv Funct Mater 30(47):2000842. https://doi.org/10.1002/adfm.202000842

    Article  CAS  Google Scholar 

  26. Zhong Q, Li Y, Zhang G (2021) Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem Eng J 409:128099. https://doi.org/10.1016/j.cej.2020.128099

    Article  CAS  Google Scholar 

  27. Wu X, Ma P, Sun Y, Du F, Song D, Xu G (2021) Application of MXene in electrochemical sensors: a review. Electroanalysis 33:1827–1851. https://doi.org/10.1002/elan.202100192

    Article  CAS  Google Scholar 

  28. Zhu X, Zhang Y, Liu M, Liu Y (2021) 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosens Bioelectron 171:112730. https://doi.org/10.1016/j.bios.2020.112730

    Article  CAS  PubMed  Google Scholar 

  29. Ji Hyun C, Don Hui L, Won-Yong L (2023) Enhanced cathodic electrogenerated chemiluminescence of luminol at a MXene–Nafion composite-modified electrode in neutral aqueous solution. J Electroanal Chem 936:117389. https://doi.org/10.1016/j.jelechem.2023.117389

    Article  CAS  Google Scholar 

  30. Liu A, Liang X, Ren X, Guan W, Gao M, Yang Y, Yang Q, Gao L, Li Y, Ma T (2020) Recent progress in MXene-based materials: potential high-performance electrocatalysts. Adv Funct Mater 30(38):2003437. https://doi.org/10.1002/adfm.202003437

    Article  CAS  Google Scholar 

  31. Fang D, Ren H, Huang Y, Dai H, Huang D, Lin Y (2020) Photothermal amplified cathodic ZnO quantum dots/Ru(bpy)32+/S2O82- ternary system for ultrasensitive electrochemiluminescence detection of thyroglobulin. Sens Actuators B 312:127950. https://doi.org/10.1016/j.snb.2020.127950

    Article  CAS  Google Scholar 

  32. Park Y, Yoo R, Park S, Lee JH, Jung H, Lee H-S, Lee W (2019) Highly sensitive and selective isoprene sensing performance of ZnO quantum dots for a breath analyzer. Sens Actuators B 290:258–266. https://doi.org/10.1016/j.snb.2019.03.118

    Article  CAS  Google Scholar 

  33. Cai G, Yu Z, Tong P, Tang D (2019) Ti(3)C(2) MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale 11:15659–15667. https://doi.org/10.1039/c9nr05797h

    Article  CAS  PubMed  Google Scholar 

  34. Zeng R, Wang W, Chen M, Wan Q, Wang C, Knopp D, Tang D (2021) CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy 82:105711. https://doi.org/10.1016/j.nanoen.2020.105711

    Article  CAS  Google Scholar 

  35. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Man Hong S, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304):1137–1140. https://doi.org/10.1126/science.aag2421

    Article  CAS  PubMed  Google Scholar 

  36. Huang L, Chen J, Yu Z, Tang D (2020) Self-powered temperature sensor with seebeck effect transduction for photothermal-thermoelectric coupled immunoassay. Anal Chem 92:2809–2814. https://doi.org/10.1021/acs.analchem.9b05218

    Article  CAS  PubMed  Google Scholar 

  37. Yu Z, Gong H, Xu J, Li Y, Xue F, Zeng Y, Liu X, Tang D (2022) Liposome-embedded Cu(2-x)Ag(x)S nanoparticle-mediated photothermal immunoassay for daily monitoring of cTnI protein using a portable thermal imager. Anal Chem 94:7408–7416. https://doi.org/10.1021/acs.analchem.2c01133

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Zhang S, Zhang Q, Xu G, Dai H, Lin Y (2016) Binding-induced internal-displacement of signal-on photoelectrochemical response: a glyphosate detection platform based on graphitic carbon nitride. Sens Actuators B 224:798–804. https://doi.org/10.1016/j.snb.2015.10.111

    Article  CAS  Google Scholar 

  39. Dai H, Gong L, Xu G, Li Y, Li X, Zhang Q, Lin Y (2015) Double-amplified photoelectrochemical response of hematin on carbon nanohorns superstructure support for ultrasensitive detection of roxarsone. Sens Actuators B 215:45–51. https://doi.org/10.1016/j.snb.2015.03.027

    Article  CAS  Google Scholar 

  40. Yu Z, Gong H, Li M, Tang D (2022) Hollow prussian blue nanozyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone. Biosens Bioelectron 218:114751. https://doi.org/10.1016/j.bios.2022.114751

    Article  CAS  PubMed  Google Scholar 

  41. Muhammad F, Guo M, Qi W, Sun F, Wang A, Guo Y, Zhu G (2011) pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J Am Chem Soc 133:8778–8781. https://doi.org/10.1021/ja200328s

    Article  CAS  PubMed  Google Scholar 

  42. Hong Z, Zhou K, Zhang J, Huang Z, Wei M (2015) Facile synthesis of rutile TiO2 mesocrystals with enhanced sodium storage properties. J Mater Chem A 3:17412–17416. https://doi.org/10.1039/c5ta04232a

    Article  CAS  Google Scholar 

  43. Qian Y, Wei H, Dong J, Du Y, Fang X, Zheng W, Sun Y, Jiang Z (2017) Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram Int 43:10757–10762. https://doi.org/10.1016/j.ceramint.2017.05.082

    Article  CAS  Google Scholar 

  44. Guo S, Kang S, Feng S, Lu W (2020) MXene-enhanced deep ultraviolet photovoltaic performances of crossed Zn2GeO4 nanowires. J Phys Chem C 124:4764–4771. https://doi.org/10.1021/acs.jpcc.0c01032

    Article  CAS  Google Scholar 

  45. Yu Z, Qiu C, Huang L, Gao Y, Tang D (2023) Microelectromechanical Microsystems-supported photothermal immunoassay for point-of-care testing of Aflatoxin B1 in foodstuff. Anal Chem 95:4212–4219. https://doi.org/10.1021/acs.analchem.2c05617

    Article  CAS  PubMed  Google Scholar 

  46. Mohrhusen L, Grebien M, Al-Shamery K (2020) Electron transfer in oxide–oxide cocatalysts: interaction of tungsten oxide clusters with Ti3+ states in rutile TiO2. J Phys Chem C 124:23661–23673. https://doi.org/10.1021/acs.jpcc.0c06591

    Article  CAS  Google Scholar 

  47. Chen W-J, Kandasamy K, Chen Y-C (2019) Functional gold nanoparticles as sensing probes for concanavalin A and as imaging agents for cancer cells. ACS Appl Energy Mater 2(6):3348–3357. https://doi.org/10.1021/acsanm.9b00220

    Article  CAS  Google Scholar 

  48. Ma X, Li J, Liu Y, Yuan Y, Xu G (2017) Construction of a concanavalin A electrochemical sensor base on a novel sandwich capture mode. Sens Actuators B 248:201–206. https://doi.org/10.1016/j.snb.2017.03.172

    Article  CAS  Google Scholar 

  49. Erdoğan Y, Çimen D, Onur MA, Denizli A (2023) Preparation of concanavalin A imprinted surface plasmon resonance based biosensors. IEEE Sensors J 23:11566–11573. https://doi.org/10.1109/jsen.2023.3266286

    Article  CAS  Google Scholar 

  50. Xie M, Chen J, Wang Y, Liu B, Song R-B, Meng H-M, Li Z (2023) Ratiometric fluorescence probe for accurate detection of concanavalin A by coupling fluorescent microsphere with boric acid functionalized carbon dots. Chin Chem Lett:108575. https://doi.org/10.1016/j.cclet.2023.108575

  51. Zhao S, Shi C, Hu H, Li Z, Xiao G, Yang Q, Sun P, Cheng L, Niu W, Bi J, Yue Z (2020) ISFET and Dex-AgNPs based portable sensor for reusable and real-time determinations of concanavalin A and glucose on smartphone. Biosens Bioelectron 151:111962. https://doi.org/10.1016/j.bios.2019.111962

    Article  CAS  PubMed  Google Scholar 

  52. Tang T, Yang F, Wang L, Zhao C, Nie F, GuopingYang (2020) A sandwich electrochemiluminescent assay for determination of concanavalin A with triple signal amplification based on MoS(2)NF@MWCNTs modified electrode and Zn-MOF encapsulated luminol. Mikrochim Acta 187:523. https://doi.org/10.1007/s00604-020-04472-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was financially supported by the National Natural Science Foundation of China (21877012, 21575024), the National Science Foundation of Fujian Province (2020J02034, 2019J01052063), and the Health-Education Joint Research Project of Fujian Province (2019-WJ-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Gao, Baoshan Zeng or Hong Dai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Huang, Y., Gao, L. et al. Versatile MXene composite probe–mediated homogeneous electrochemiluminescence biosensor with integrated signal transduction and near-infrared modulation strategy for concanavalin A detection. Microchim Acta 190, 372 (2023). https://doi.org/10.1007/s00604-023-05941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05941-6

Keywords

Navigation