Skip to main content
Log in

Dual-potential electrochemiluminescence cytosensor based on a metal-organic framework and ABEI-PEI-Au@AgNPs for the simultaneous determination of phosphatidylserine and epidermal growth factor receptors on an apoptotic cell surface

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new electrochemiluminescence (ECL) cytosensor is proposed for the simultaneous determination of phosphatidylserine (PS) and epidermal growth factor receptor (EGFR) based on the ECL signals of metal-organic framework-5 (MOF-5) loaded CdS quantum dots and N-(aminobutyl)-N-(ethylisoluminol)-polyethylenimine capped Au and Ag nanoparticles. Apoptosis promotes the exposure of PS and reduces the expression of EGFR in cell membranes. Two spatially resolved areas on dual-disk glassy carbon electrodes were designed to eliminate the interference from different ECL probes. Using HepG2 cells treated with resveratrol to induce apoptosis, the cytosensor exhibited high sensitivity, simplicity, and high reproducibility, demonstrating its potential in drug screening and rapid apoptotic cell detection. The strategy reported provides a promising platform for the highly sensitive cytosensing and convenient screening of clinically relevant anticancer drugs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou B, Qiu Y, Wen Q, Zhu M, Yang P (2017) Dual electrochemiluminescence signal system for in situ and simultaneous evaluation of multiple cell-surface receptors. ACS Appl Mater Inter 9:2074–2083. https://doi.org/10.1021/acsami.6b12411

    Article  CAS  Google Scholar 

  2. Yavas S, Macha´n R, Wohland T (2016) The epidermal growth factor receptor forms location-dependent complexes in resting cells. Biophys J 111:2241–2254. https://doi.org/10.1016/j.bpj.2016.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koseska A, Bastiaens PIH (2022) Processing temporal growth factor patterns by an epidermal growth factor receptor network dynamically established in space. Annu Rev Cell Dev Bi 36:359–383. https://doi.org/10.1146/annurev-cellbio-013020-103810

    Article  CAS  Google Scholar 

  4. Qiu Y, Wen Q, Zhang L, Yang P (2016) Label-free and dynamic evaluation of cell-surface epidermal growth factor receptor expression via an electrochemiluminescence cytosensor. Talanta 150:286–295. https://doi.org/10.1016/j.talanta.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  5. Nagata S, Suzuki J, Segawa K, Fujii T (2016) Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23:952–961. https://doi.org/10.1038/cdd.2016.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park M, Kang K (2019) Phosphatidylserine receptor-targeting therapies for the treatment of cancer. Arch Pharm Res 42:617–628. https://doi.org/10.1007/s12272-019-01167-4

    Article  CAS  PubMed  Google Scholar 

  7. Pillai-Kastoori L, Schutz-Geschwender AR, Harford JA (2020) A systematic approach to quantitative western blot analysis. Anal Biochem 593:113608. https://doi.org/10.1016/j.ab.2020.113608

    Article  CAS  PubMed  Google Scholar 

  8. Ma Y, Lee Y, Best-Popescu C, Gao L (2021) High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. P Natl Acad Sci USA 118:e2004176118. https://doi.org/10.1073/pnas.2004176118

    Article  CAS  Google Scholar 

  9. Salmond N, Khanna K, Owen GR, Williams KC (2021) Nanoscale flow cytometry for immunophenotyping and quantitating extracellular vesicles in blood plasma. Nanoscale 13:2012–2025. https://doi.org/10.1039/d0nr05525e

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Wang Z, Wang X, Zhang Y, Qu Z, Ding S (2022) Band-edge effect-induced electrochemiluminescence signal amplification based on inverse opal photonic crystals for ultrasensitive detection of carcinoembryonic antigen. Anal Chem 94:9919–9926. https://doi.org/10.1021/acs.analchem.2c01986

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Wang B, Kang K, Ji X, Wang B, Li C, Ren J (2022) Electrochemiluminescence resonance energy transfer system between ruthenium-based nanosheets and CdS quantum dots for detection of chlorogenic acid. Microchim Acta 189:323. https://doi.org/10.1007/s00604-022-05428-w

    Article  CAS  Google Scholar 

  12. Li S, Wu Y, Pang C, Ma X, Wang M, Luo J, Zhi X, Li B (2022) Reusable molecularly imprinted electrochemiluminescence assay for kanamycin based on ordered mesoporous carbon loaded with indium oxide nanoparticles and carbon quantum dots. Microchim Acta 189:431. https://doi.org/10.1007/s00604-022-05527-8

    Article  CAS  Google Scholar 

  13. Kong X, Wang C, Pu L, Gai P, Li F (2021) Self-photocatalysis boosted electrochemiluminescence signal amplification via in situ generation of the coreactant. Anal Chem 93:12441–12446. https://doi.org/10.1021/acs.analchem.1c02605

    Article  CAS  PubMed  Google Scholar 

  14. Hao N, Wang K (2016) Recent development of electrochemiluminescence sensors for food analysis. Anal Bioanal Chem 408:7035–7048. https://doi.org/10.1007/s00216-016-9548-2

    Article  CAS  PubMed  Google Scholar 

  15. Mo G, He X, Qin D, Meng S, Wu Y, Deng B (2021) Spatially-resolved dual-potential sandwich electrochemiluminescence immunosensor for the simultaneous determination of carbohydrate antigen 19-9 and carbohydrate antigen 24-2. Biosens Bioelectron 178:113024. https://doi.org/10.1016/j.bios.2021.113024

    Article  CAS  PubMed  Google Scholar 

  16. Wang F, Liu Y, Fu C, Li N, Du M, Zhang L, Ge S, Yu J (2021) Paper-based bipolar electrode electrochemiluminescence platform for detection of multiple miRNAs. Anal Chem 93:1702–1708. https://doi.org/10.1021/acs.analchem.0c04307

    Article  CAS  PubMed  Google Scholar 

  17. Kurup CP, Mohd-Naim NF, Ahmed MU (2022) A solid state electrochemiluminescence aptasensor for β lactoglobulin using Ru AuNP/GNP/Naf nanocomposite modified printed sensor. Microchim Acta 189:165. https://doi.org/10.1007/s00604-022-05275-9

    Article  CAS  Google Scholar 

  18. Lu J, Shan XY, Wu Q, Sun Z, Zhang X, Zhao Y, Tian L (2022) Solid-state electrochemiluminescence sensor based on zeolitic imidazolate framework-67 electrospinning nanofibers for chlorpyrifos detection. Microchim Acta 189:298. https://doi.org/10.1007/s00604-022-05398-z

    Article  CAS  Google Scholar 

  19. Chen Y, Gou X, Ma C, Jiang D, Zhu J (2021) A synergistic coreactant for single-cell electrochemiluminescence imaging: guanine-rich ssDNA-loaded high-index faceted gold nanoflowers. Anal Chem 93:7682–7689. https://doi.org/10.1021/acs.analchem.1c00602

    Article  CAS  PubMed  Google Scholar 

  20. Dong J, Lu Y, Xu Y, Chen F, Yang J, Chen Y, Feng J (2021) Direct imaging of single-molecule electrochemical reactions in solution. Nature 596:244–249. https://doi.org/10.1038/s41586-021-03715-9

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Zhang H, Li B, Liu J, Jiang D, Liu B, Sojic N (2021) Single biomolecule imaging by electrochemiluminescence. J Am Chem Soc 143:17910–17914. https://doi.org/10.1021/jacs.1c06673

    Article  CAS  PubMed  Google Scholar 

  22. Cao J, Wang Y, Zhang J, Dong Y, Liu F, Ren S, Liu Y (2018) Immuno-electrochemiluminescent imaging of a single cell based on functional nanoprobes of heterogeneous Ru(bpy)32+@SiO2/Au nanoparticles. Anal Chem 90:10334–10339. https://doi.org/10.1021/acs.analchem.8b02141

    Article  CAS  PubMed  Google Scholar 

  23. Wang C, Pei Y, Liu P, Li Y, Wang Z (2022) Donor–acceptor structure-dependent electrochemiluminescence sensor for accurate uranium detection in drinking water. ACS Sustain Chem Eng 10:14665–14670. https://doi.org/10.1021/acssuschemeng.2c05561

    Article  CAS  Google Scholar 

  24. Fan M, Yu H, Fu P, Su Z, Li X, Hu X, Gao F, Pan Q (2021) Luminescent Cd(II) metal-organic frameworks with anthracene nitrogen-containing organic ligands as novel multifunctional chemosensors for the detection of picric acid, pesticides, and ferric ions. Dyes Pigments 185:108834. https://doi.org/10.1016/j.dyepig.2020.108834

    Article  CAS  Google Scholar 

  25. Liang Z, Qiu T, Gao S, Zhong R, Zou R (2022) Multi-scale design of metal-organic framework-derived materials for energy electrocatalysis. Adv Energy Mater 12:2003410. https://doi.org/10.1002/aenm.202003410

    Article  CAS  Google Scholar 

  26. Wang M, Dong R, Feng X (2021) Two-dimensional conjugated metal-organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem Soc Rev 50:2764–2793. https://doi.org/10.1039/d2cs90005j

    Article  CAS  PubMed  Google Scholar 

  27. Qin D, Meng S, Wu Y, Luo Z, Deng B (2022) Construction of efficient electrochemiluminescence resonance energy transfer sensor based on SnO2/SnS2QDs-Ru@IRMOF-3 composite for sensitive detection of procalcitonin. Microchim Acta 189:430. https://doi.org/10.1007/s00604-022-05519-8

    Article  CAS  Google Scholar 

  28. Mo G, Qin D, Jiang X, Zheng X, Mo W, Deng B (2020) A sensitive electrochemiluminescence biosensor based on metal-organic framework and imprinted polymer for squamous cell carcinoma antigen detection. Sensor Actuat B 310:127852. https://doi.org/10.1016/j.snb.2020.127852

    Article  CAS  Google Scholar 

  29. Wang Y, Zhao G, Chi H, Yang S, Niu Q, Wu D, Cao W, Li T, Ma H, Wei Q (2021) Self-luminescent lanthanide metal-organic frameworks as signal probes in electrochemiluminescence immunoassay. J Am Chem Soc 143:504–512. https://doi.org/10.1021/jacs.0c12449

    Article  CAS  PubMed  Google Scholar 

  30. Noby H, El-Shazly AH, Elkady MF, Ohshima M (2019) Strong acid doping for the preparation of conductive polyaniline nanoflowers, nanotubes, and nanofibers. Polymer 182:121848. https://doi.org/10.1016/j.polymer.2019.121848

    Article  CAS  Google Scholar 

  31. Khosrozadeh A, Darabi MA, Wang Q, Xing M (2017) Polyaniline nanoflowers grown on vibrationisolator-mimetic polyurethane nanofibers for flexible supercapacitors with prolonged cycle life. J Mater Chem A 5:7933–7943. https://doi.org/10.1039/c7ta00591a

    Article  CAS  Google Scholar 

  32. Dai C, Yang J, Hussein WM, Zhao L, Wang X, Khalil ZG, Capon RJ, Toth I, Stephenson RJ (2022) Polyethylenimine: an intranasal adjuvant for liposomal peptide based subunit vaccine against group a streptococcus. ACS Infect Dis 6:2502–2512. https://doi.org/10.1021/acsinfecdis.0c00452

    Article  CAS  Google Scholar 

  33. Yang H, Wang H, Xiong C, Chai Y, Yuan R (2017) Intramolecular self-enhanced nanochains functionalized by an electrochemiluminescence reagent and its immunosensing application for the detection of urinary β2-microglobulin. ACS Appl Mater Inter 9:36239–36246. https://doi.org/10.1021/acsami.7b12011

    Article  CAS  Google Scholar 

  34. Zhou B, Zhu M, Hao Y, Yang P (2017) Potential-resolved electrochemiluminescence for simultaneous determination of triple latent tuberculosis infection markers. ACS Appl Mater Inter 9:30536–30542. https://doi.org/10.1021/acsami.7b10343

    Article  CAS  Google Scholar 

  35. Du D, Shu J, Guo M, Haghighatbin MA, Yang D, Bian Z, Cui H (2020) Potential-resolved differential electrochemiluminescence immunosensor for cardiac troponin I based on MOF-5-wrapped CdS quantum dot nanoluminophores. Anal Chem 92:14113–14121. https://doi.org/10.1021/acs.analchem.0c03131

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L, Jiang J, Luo J, Zhang L, Cai J, Teng J, Yang P (2013) A label-free electrochemiluminescence cytosensors for specific detection of early apoptosis. Biosens Bioelectron 49:46–52. https://doi.org/10.1016/j.bios.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  37. Shivaji K, Mani S, Ponmurugan P, Suenne C, Castro SD, Davies ML, Balasubramanian MG, Pitchaimuthu S (2018) Green-synthesis-derived CdS quantum dots using tea leaf extract: antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl Nano Mater 1:1683–1693. https://doi.org/10.1021/acsanm.8b00147

    Article  CAS  Google Scholar 

  38. Pakolpakc A, Draczynski ZJ (2021) Preparation and characterization of the advanced alginate-Based nanofibrous nonwoven using EDC/NHS coupling agent by electrospinning. J Text Inst:1–9. https://doi.org/10.1080/00405000.2021.1954806

  39. Liu Y, Schubert DJ (1997) Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis. J Neurochem 69:2285–2293. https://doi.org/10.1046/j.1471-4159.1997.69062285.x

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Li W, Zhou Y, Chai Y, Yuan R (2019) An ultrasensitive electrochemiluminescence biosensor for microRNA detection based on luminol-functionalized Au NPs@ZnO nanomaterials as signal probe and dissolved O2 as coreactant. Biosens Bioelectron 135:8–13. https://doi.org/10.1016/j.bios.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  41. Liu G, Jin B, Ma C, Chen Z, Zhu J (2019) Potential-resolved electrochemiluminescence nanoprobes for visual apoptosis evaluation at single-cell level. Anal Chem 91:6363–6370. https://doi.org/10.1021/acs.analchem.9b01401

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Chen B, He M, Wang H, Xiao G, Yang B, Hu B (2017) Simultaneous detection of MCF-7 and HepG2 cells in blood by ICP-MS with gold nanoparticles and quantum dots as elemental tags. Biosens Bioelectron 90:343–348. https://doi.org/10.1016/j.bios.2016.11.030

    Article  CAS  PubMed  Google Scholar 

  43. Liu D, Wang L, Ma S, Jiang Z, Yang B, Han X, Liu S (2015) A novel electrochemiluminescence immunosensor based on CdS-coated ZnO nanorods array for HepG2 cell detection. Nanoscale 7:3627–3633. https://doi.org/10.1039/c4nr06946c

    Article  CAS  PubMed  Google Scholar 

  44. Wu Y, Zhou H, Wei W, Hua X, Wang L, Zhou Z, Liu S (2012) Signal amplification cytosensor for evaluation of drug-induced cancer cell apoptosis. Anal Chem 84:1894–1899. https://doi.org/10.1021/ac202672x

    Article  CAS  PubMed  Google Scholar 

  45. Wu M, Yuan D, Xu J, Chen H (2013) Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem 85:11960–11965. https://doi.org/10.1021/ac402889z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22164004) and the Guangxi Science Foundation of China (2022GXNSFDA035069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biyang Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

The online version contains supplementary material available at (DOCX 4501 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, G., Qin, D., Wu, Y. et al. Dual-potential electrochemiluminescence cytosensor based on a metal-organic framework and ABEI-PEI-Au@AgNPs for the simultaneous determination of phosphatidylserine and epidermal growth factor receptors on an apoptotic cell surface. Microchim Acta 190, 347 (2023). https://doi.org/10.1007/s00604-023-05934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05934-5

Keywords

Navigation