Skip to main content
Log in

A dual-mode nanoprobe based on silicon nanoparticles and Fe(II)-phenanthroline for the colorimetric and fluorescence determination of nitrite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric and colorimetric dual-modal nanoprobe (denoted as Fe2+-Phen/SiNPs) has been developed for selective and sensitive determination of nitrite (NO2). The mechanism is based on fluorescence quenching between silicon nanoparticles (SiNPs) and Fe(II)-phenanthroline complex (Fe2+-Phen) via inner filter effect and redox. With the addition of increasing NO2, Fe2+ is oxidized to Fe3+, recovering the fluorescence of SiNPs. Meanwhile, the color of the system gradually changes from orange-red to colorless, which enables colorimetric measurement. The NO2 concentration shows a wide linear relationship with fluorescence intensity from 0.1 to 1.0 mM (R2 = 0.9955) with a detection limit of 2.4 μM in the fluorometric method (excitation wavelength: 380 nm). By contrast, the linear range of the colorimetric method ranges from 0.01 to 0.35 mM (R2 = 0.9953) with a limit of detection of 6.8 μM (proposed selective absorbance: 510 nm). The probe has been successfully applied to nitrite determination in water, salted vegetables, and hams demonstrating broad application prospects for the determination of nitrite in complicated matrices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167

    Article  CAS  PubMed  Google Scholar 

  2. Li YS, Zhao CL, Li BL, Gao XF (2020) Evaluating nitrite content changes in some Chinese home cooking with a newely-developed CDs diazotization spectrophotometry. Food Chem 330:127151

    Article  CAS  PubMed  Google Scholar 

  3. Robichová S, Slameňová D, Gábelová A, Sedlák J, Jakubı́ková J (2004) An investigation of the genotoxic effects of N-nitrosomorpholine in mammalian cells. Chem Biol Interact 148(3):163–171

    Article  PubMed  Google Scholar 

  4. Zhan Y, Zeng Y, Li L, Luo F, Qiu B, Lin Z, Guo L (2019) Ratiometric fluorescent hydrogel test kit for on-spot visual detection of nitrite. ACS Sens 4(5):1252–1260

    Article  CAS  PubMed  Google Scholar 

  5. National Standards of the People's Republic of China (2022) National standard for food safety - limit of contaminants in food. GB-2762

  6. Deng Y, Zhou Y, Li Q, Qian J (2021) One-step hydrothermal synthesis of nitrogen-doped carbon dots for high-sensitivity visual detection of nitrite and ascorbic acid. Anal Methods 13(33):3685–3692

    Article  CAS  PubMed  Google Scholar 

  7. Fan X, Lin P, Liang S, Hui N, Zhang R, Feng J, Xu G (2017) Gold nanoclusters doped poly(3,4-ethylenedioxythiophene) for highly sensitive electrochemical sensing of nitrite. Ionics 23(4):997–1003

    Article  CAS  Google Scholar 

  8. Zhang J, Zhang Y, Zhou J, Wang L (2018) Construction of a highly sensitive non-enzymatic nitrite sensor using electrochemically reduced holey graphene. Anal Chim Acta 1043:28–34

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Adams E, Van Schepdael A (2012) A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection. Talanta 97:142–144

    Article  CAS  PubMed  Google Scholar 

  10. Chamandust S, Mehrasebi MR, Kamali K, Solgi R, Taran J, Nazari F, Hosseini M-J (2016) Simultaneous determination of nitrite and nitrate in milk samples by ion chromatography method and estimation of dietary intake. Int J Food Prop 19(9):1983–1993

    Article  CAS  Google Scholar 

  11. Lopez-Moreno C, Perez IV, Urbano AM (2016) Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat. Food Chem 194:687–694

    Article  CAS  PubMed  Google Scholar 

  12. Campanella B, Onor M, Pagliano E (2017) Rapid determination of nitrate in vegetables by gas chromatography mass spectrometry. Anal Chim Acta 980:33–40

    Article  CAS  PubMed  Google Scholar 

  13. Luckovitch N, Pagliano E (2020) A reference isotope dilution headspace GC/MS method for the determination of nitrite and nitrate in meat samples. Int J Food Sci Tech 55(3):1110–1118

    Article  CAS  Google Scholar 

  14. Wang XF, Fan JC, Ren R, Jin Q, Wang J (2016) Rapid determination of nitrite in foods in acidic conditions by high-performance liquid chromatography with fluorescence detection. J Sep Sci 39(12):2263–2269

    Article  CAS  PubMed  Google Scholar 

  15. Tatarczak-Michalewska M, Flieger J, Kawka J, Płaziński W, Flieger W, Blicharska E, Majerek D (2019) HPLC-DAD determination of nitrite and nitrate in human saliva utilizing a phosphatidylcholine column. Molecules 24(9):1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ali HRH, Hassan AI, Hassan YF, El-Wekil MM (2021) Nitrite fluorometric nanoprobe based on α-MnO2 nanorods functionalized with a fluorescence reporter dye. Microchem J 164:105982

    Article  CAS  Google Scholar 

  17. Zhang L, Chen Y, Zhang H, Lv C (2014) Simultaneous detection of nitrate and nitrite in human urine using CdTe quantum dot-enhanced chemiluminescence from peroxynitrous acid-carbonate system. Sci China Chem 44(3):351–357

    CAS  Google Scholar 

  18. Li D, Ma Y, Duan H, Deng W, Li D (2018) Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosens Bioelectron 99:389–398

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Wu X, Yuan Z, Lu C (2018) π-Conjugated thiolate amplified spectrophotometry nitrite assay with improved sensitivity and accuracy. Chem Commun 54(86):12178–12181

    Article  CAS  Google Scholar 

  20. Borghei Y-S, Hosseini M, Ganjali MR, Hosseinkhani S (2017) Label-free fluorescent detection of microRNA-155 based on synthesis of hairpin DNA-templated copper nanoclusters by etching (top-down approach). Sens Actuators B Chem 248:133–139

    Article  CAS  Google Scholar 

  21. Xiang X, Zhang Z, Han L, Huang F, Zheng M, Tang H, Deng Q (2017) Fluorescence switching sensor for sensitive detection of sinapine using carbon quantum dots. Sens Actuators B Chem 241:482–488

    Article  CAS  Google Scholar 

  22. Zhang F, Zhu X, Jiao Z, Liu X, Zhang H (2018) Sensitive naked eye detection and quantification assay for nitrite by a fluorescence probe in various water resources. Spectrochim Acta A Mol Biomol Spectrosc 200:275–280

    Article  CAS  PubMed  Google Scholar 

  23. Xu J, Shi Y, Xu G, Zhao Q, Hui L, Zhang S, Zhu B, Xu Z, Bian Z (2022) A novel highly specific colorimetric fluorescent probe for the detection of nitrite in aqueous solution. Luminescence 37(5):729–733

    Article  CAS  PubMed  Google Scholar 

  24. He L, Zou W, Zeng D, Gong F, Wang Q, Xia J, Cao Z (2020) Highly fluorescent dihydropyrimido-diindole derivative as a probe for detecting nitrite in food products and cell-imaging. Dyes Pigments 177:108256

    Article  CAS  Google Scholar 

  25. Liu Y, Xue H, Liu J, Wang Q, Wang L (2018) Carbon quantum dot-based fluorometric nitrite assay by exploiting the oxidation of iron(II) to iron(III). Microchim Acta 185(2):129

    Article  Google Scholar 

  26. Kong Y, Cheng Q, He Y, Ge Y, Zhou J, Song G (2020) A dual-modal fluorometric and colorimetric nanoprobe based on graphitic carbon nitrite quantum dots and Fe(II)-bathophenanthroline complex for detection of nitrite in sausage and water. Food Chem 312:126089

    Article  PubMed  Google Scholar 

  27. Wang S, Lin Q, Filbrun SL, Zhou R, An Q, Yin Y, Xu W, Xu D, Liu C (2021) Additive-improved colorimetric nitrite assay with ultrahigh sensitivity based on etching gold nanorods. Sens Actuators B Chem 328:129073

    Article  CAS  Google Scholar 

  28. Chen C, Yuan Z, Chang HT, Lu F, Li Z, Lu C (2016) Silver nanoclusters as fluorescent nanosensors for selective and sensitive nitrite detection. Anal Methods 8(12):2628–2633

    Article  CAS  Google Scholar 

  29. Zheng XJ, Liang RP, Li ZJ, Zhang L, Qiu JD (2016) One-step, stabilizer-free and green synthesis of Cu nanoclusters as fluorescent probes for sensitive and selective detection of nitrite ions. Sens Actuators B Chem 230:314–319

    Article  CAS  Google Scholar 

  30. Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Ye DX, Liang GH, Chang J, Kong JL, Chen JY (2014) One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells. J Mater Chem B 2(27):4338–4345

    Article  CAS  PubMed  Google Scholar 

  32. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21(23):5563–5565

    Article  CAS  Google Scholar 

  33. Barati A, Shamsipur M, Abdollahi H (2015) Hemoglobin detection using carbon dots as a fluorescence probe. Biosens Bioelectron 71:470–475

    Article  CAS  PubMed  Google Scholar 

  34. Taweekarn T, Wongniramaikul W, Limsakul W, Sriprom W, Phawachalotorn C, Choodum A (2020) A novel colorimetric sensor based on modified mesoporous silica nanoparticles for rapid on-site detection of nitrite. Microchim Acta 187(12):643

    Article  CAS  Google Scholar 

  35. Wang L, Li B, Zhang L, Zhang L, Zhao H (2012) Fabrication and characterization of a fluorescent sensor based on Rh 6G-functionlized silica nanoparticles for nitrite ion detection. Sens Actuators B Chem 171–172:946–953

    Article  Google Scholar 

  36. Wei N, Wei M-X, Huang B-H, Guo X-F, Wang H (2021) One-pot facile synthesis of green-emitting fluorescent silicon quantum dots for the highly selective and sensitive detection of nitrite in food samples. Dyes Pigments 184:108848

    Article  CAS  Google Scholar 

  37. Xing K, Ge J, Wang WX, Geng X, Shen XP, Tang JL, Qu LB, Sun YQ, Li ZH (2019) A turn-on fluorescent probe for sensitive detection of ascorbic acid based on SiNP-MnO2 nanocomposites. New J Chem 43(24):9466–9471

    Article  CAS  Google Scholar 

  38. National Standards of the People's Republic of China (2016) National standard for food safety - determination of nitrite and nitrate in food, GB-5009.33

  39. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7(9):730–734

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Xu C, Bai Y, Liu L, Liao D, Liang J, Liu L, Han H (2017) Interaction between fluorescein isothiocyanate and carbon dots: inner filter effect and fluorescence resonance energy transfer. Spectrochim Acta A Mol Biomol Spectrosc 171:311–316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences (No. CXGC2023A38, CXGC2023B06, CXGC2023F09), Natural Science Foundation of Shandong Province of China (No. ZR2023QC284), National Natural Science Foundation of China (No. 22106080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunlei Yang or Hongwei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.33 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Xu, G., Hou, C. et al. A dual-mode nanoprobe based on silicon nanoparticles and Fe(II)-phenanthroline for the colorimetric and fluorescence determination of nitrite. Microchim Acta 190, 318 (2023). https://doi.org/10.1007/s00604-023-05911-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05911-y

Keywords

Navigation