Skip to main content
Log in

Simultaneous visual detection of multiple heavy metal ions by a high-throughput fluorescent probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

To develop simultaneous and in-situ detection techniques towards Cr(VI) and Mn(II), Eu/Tb@CDs with white fluorescence were prepared by a one-step hydrothermal method. With the increase of Cr(VI), all fluorescence channels of Eu/Tb@CDs exhibited obvious quenching, and the detection limit (LOD) was 0.10 μM. In the presence of Mn(II), only the fluorescence from Tb and Eu was quenched, while the fluorescence of CDs was not effected. The LOD for Mn(II) was 0.16 μM. More importantly, in the actual water samples where Cr(VI) and Mn(II) coexist, Eu/Tb@CDs can realize their rapid and simultaneous detection by simple spectral calculation. The selective and competitive experiments have also confirmed that the detection of Cr(VI) and Mn(II) was not interfered by common pollutants in groundwater. It is undeniable that the simultaneous detection of multiple targets by one probe not only greatly improves the detection efficiency, but also has important significance for the field monitoring of water quality parameters.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Djema M, Mebrouk N (2022) Groundwater quality and nitrate pollution in the Nador plain, Algeria. Environ Earth Sci. 81(18):460. https://doi.org/10.1007/s12665-022-10557-9

  2. Chen RH, Liu LM, Li Y, Zhai YZ, Chen HY, Hu B, Zhang QR, Teng YG (2022) Characteristics of hydro-geochemistry and groundwater pollution in Songnen Plain in northeastern China. Sustainability 14(11):6527. https://doi.org/10.3390/su14116527

    Article  CAS  Google Scholar 

  3. Liu SF, Gao B, Qin HH, Ge Q, Ling HL, Fang Z, Ding Y, Shi TC (2022) Concentration mechanism of fluorine, arsenic, and uranium in groundwater of the Hailar Basin China. Environ Earth Sci 81(18):444. https://doi.org/10.1007/s12665-022-10560-0

    Article  CAS  Google Scholar 

  4. Peng JW, Yuan HM, Ren TT, Liu ZH, Qiao JZ, Ma Q, Guo X, Ma GX, Wu YQ (2022) Fluorescent nanocellulose-based hydrogel incorporating titanate nanofibers for sorption and detection of Cr(VI). Int J Biol Macromol 215:625–634. https://doi.org/10.1016/j.ijbiomac.2022.06.148

    Article  CAS  PubMed  Google Scholar 

  5. Han JH, Zhang ZH, Wang ZH (2022) Responses of acrocarpous moss communities to heavy metal (Fe, Mn, Cd) and sulfur pollution in the Changgou carbonate manganese ore, SW China. J Mt Sci 19(5):1292–1306. https://doi.org/10.1007/s11629-021-7023-9

    Article  Google Scholar 

  6. Bordera L, Hernandis V, Canals A (1996) Automatic flow injection system for the determination of heavy metals in sewage sludge by microwave digestion and detection by inductively coupled plasma atomic emission spectrometry (MW-ICP/AES). Fresenius J Anal Chem 355(2):112–119. https://doi.org/10.1007/s0021663550112

    Article  CAS  Google Scholar 

  7. Dundar MS, Kaplan F, Caner C, Altundag H (2018) Enrichment of some heavy metals with cloud point extraction via 5,7-dIIodo-8-hydroxyquinoline ligand and detection by ultrasonic nebulizer-ICP-OES using internal standard method. Atomic Spectrosc 39(6):229–234. https://doi.org/10.46770/AS.2018.06.002

    Article  CAS  Google Scholar 

  8. Princy SSJ, Sherin JFJ, Vijayakumar C, Hentry C, Bindhu MR, Alarjani KM, Alghamidi NS, Hussein DS (2022) Detection of heavy metals, SERS and antibacterial activity of polyvinylpyrolidone modified plasmonic nanoparticles. Environ Res 210:112883. https://doi.org/10.1016/j.envres.2022

    Article  Google Scholar 

  9. Hajzus JR, Shriver-Lake LC, Dean SN, Erickson JS, Zabetakis D, Golden J, Pennachio DJ, Myers-Ward RL, Trammell SA (2022) Modifications of epitaxial graphene on SiC for the electrochemical detection and identification of heavy metal salts in seawater. Sensors 22(14):5367. https://doi.org/10.3390/s22145367

  10. Che HC, Li Y, Zhang SY, Chen W, Tian XK, Yang C, Lu LQ, Zhou ZX, Nie YL (2020) A portable logic detector based on Eu-MOF for multi-target, on-site, visual detection of Eu3+ and fluoride in groundwater. Sensors Actuators B-Chem 324:128641. https://doi.org/10.1016/j.snb.2020.128641

    Article  CAS  Google Scholar 

  11. Che HC, Li Y, Tian XK, Yang C, Lu LQ, Nie YL (2021) A versatile logic detector and fluorescent film based on Eu-based MOF for swift detection of formaldehyde in solutions and gas phase. J Hazard Mater 410:124624. https://doi.org/10.1016/j.jhazmat.2020.124624

    Article  CAS  PubMed  Google Scholar 

  12. Che HC, Yan SL, Nie YL, Tian XK, Li Y (2022) Film-based fluorescent sensor for visual monitoring and efficient removal of aniline in solutions and gas phase. J Hazard Mater 435:129016. https://doi.org/10.1016/j.jhazmat.2022.129016

    Article  CAS  PubMed  Google Scholar 

  13. Che HC, Yan SL, Xiong M, Nie YL, Tian XK, Li Y (2023) Ultra-trace detection and efficient adsorption removal of multiple water-soluble volatile organic compounds by fluorescent sensor array. J Hazard Mater 443:130182. https://doi.org/10.1016/j.jhazmat.2022.130182

    Article  CAS  PubMed  Google Scholar 

  14. Chen HY, TIan FS, Lu C (2022) Engineering plasmon-enhanced fluorescent gold nanoclusters using bovine serum albumin as a novel separation layer for improved selectivity br. Anal Chem 94:16461–16469. https://doi.org/10.1021/acs.analchem.2c03925

    Article  CAS  PubMed  Google Scholar 

  15. Noori HN, Abdulameer AF (2022) Study of optical and structural properties of CdTe quantum dots capped with 3MPA using hydrothermal method. Chem Methodologies 6(11):842–850. https://doi.org/10.22034/chemm.2022.353494

    Article  CAS  Google Scholar 

  16. Zheng XC, Ren ST, Gai QX, Liu WJ (2020) Carbon dot/carbon nitride composites fluorescent probe for the highly selective detection of Cr(VI) ions. J Photochem Photobiol A-Chem 400:112711. https://doi.org/10.1016/j.jphotochem.2020.112711

    Article  CAS  Google Scholar 

  17. Ngeontae W, Chaiendoo K, Ngamdee K, Ruangchai S, Saiyasombat C, Busayaporn W, Ittisanronnachai S, Promarak V (2022) A highly selective fluorescent sensor for manganese (II) ion detection based on N, S-doped carbon dots triggered by manganese oxide. Dyes Pigm 203:110325. https://doi.org/10.1016/j.dyepig.2022.110325

    Article  CAS  Google Scholar 

  18. Zhao SY, Chen XR, Zhang CX, Zhao PT, Ragauskas AJ, Song XP (2021) Fluorescence enhancement of lignin-based carbon quantum dots by concentration-dependent and electron-donating substituent synergy and their cell imaging applications. ACS Appl Mater Interfaces 13(51):61565–61577. https://doi.org/10.1021/acsami.1c20648

    Article  CAS  PubMed  Google Scholar 

  19. Gao LF, Wang LD, Kuklin AV, Gao J, Yin SC, Agren H, Zhang H, 2021. A facile approach for elemental-doped carbon quantum dots and their application for efficient photodetectors. Small 17(52):2105683. https://doi.org/10.1002/smll.202105683

  20. Huo XY, Liu LZ, Bai YF, Qin J, Yuan L, Feng F (2022) Facile synthesis of yellowish-green emitting carbon quantum dots and their applications for phoxim sensing and cellular imaging. Anal Chim Acta 1206:338685. https://doi.org/10.1016/j.aca.2021.338685

    Article  CAS  PubMed  Google Scholar 

  21. Wang GQ, Zhang SR, Cui JZ, Gao WS, Rong X, Lu YX, Gao CZ (2022) Preparation of nitrogen-doped carbon quantum dots from chelating agent and used as fluorescent probes for accurate detection of ClO- and Cr(VI). Anal Chim Acta 1195:339478. https://doi.org/10.1016/j.aca.2022.339478

    Article  CAS  PubMed  Google Scholar 

  22. Liu FL, Li HS, Liao DD, Xu YH, Yu MX, Deng SW, Zhang GS, Xiao TF, Long JY, Zhang HG, Li YT, Li KK, Zhang P (2020) Carbon quantum dots derived from the extracellular polymeric substance of anaerobic ammonium oxidation granular sludge for detection of trace Mn(vII) and Cr(vi). RSC Adv 10(53):32249–32258. https://doi.org/10.1039/D0RA06133F

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ding YF, Zheng JX, Wang JL, Yang YZ, Liu XG (2019) Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature. J Mater Chem C 7(6):1502–1509. https://doi.org/10.1039/C8TC04887H

    Article  CAS  Google Scholar 

  24. Feng XT, Zhang F, Wang YL, Zhang Y, Yang YZ, Liu XG (2016) Fluorescent carbon quantum dots as single light converter for white LEDs. J Electron Mater 45(6):2784–2788. https://doi.org/10.1007/s11664-016-4407-7

    Article  CAS  Google Scholar 

  25. Jagannathan M, Dhinasekaran D, Soundharraj P, Rajendran S, Vo DVN, Prakasarao A, Ganesan S (2021) Green synthesis of white light emitting carbon quantum dots: Fabrication of white fluorescent film and optical sensor applications. J Hazard Mater 416:125091. https://doi.org/10.1016/j.jhazmat.2021.125091

    Article  CAS  PubMed  Google Scholar 

  26. Tian YY, Che HC, Wang JH, Wang D, Yang LZ, Wang LY, Nie YL, Tian XK (2021) Smartphone as a simple device for visual and on-site detection of fluoride in groundwater. J Hazard Mater 411:125182. https://doi.org/10.1016/j.jhazmat.2021.125182

    Article  CAS  PubMed  Google Scholar 

  27. Che HC, Nie YL, Tian XK, Li Y (2023) New method for morphological identification and simultaneous quantification of multiple tetracyclines by a white fluorescent probe. J Hazard Mater 441:129956. https://doi.org/10.1016/j.jhazmat.2022.129956

    Article  CAS  PubMed  Google Scholar 

  28. Tian XK, Wang JH, Li Y, Yang C, Lu LQ, Nie YL (2018) Sensitive determination of hardness and fluoride in ground water by a hybrid nanosensor based on aggregation induced FRET on and off mechanism. Sensors Actuators B-Chem 262:522–530. https://doi.org/10.1016/j.snb.2018.02.020

    Article  CAS  Google Scholar 

  29. Yuan P, Annabi-Bergaya F, Tao Q, Fan MD, Liu ZW, Zhu JX, He HP, Chen TH (2008) A combined study by XRD, MR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay. J Colloid Interf Sci 324:142–149. https://doi.org/10.1016/j.jcis.2008.04.076

    Article  CAS  Google Scholar 

  30. Sienkiewicz-Gromiuk J, Rusinek I, Kurach L, Rzaczynska Z (2016) Thermal and spectroscopic (IR, XPS) properties of lanthanide (III) benzene-1,3,5-triacetate complexes. J Therm Anal Calorim 126:327–342. https://doi.org/10.1007/s10973-016-5521-8

    Article  CAS  Google Scholar 

  31. Zheng K, Liu ZQ, Jiang YF, Guo PH, Li HR, Zeng CH, Ng SW, Zhong SL (2018) Ultrahigh luminescence quantum yield lanthanide coordination polymer as a multifunctional sensor. Dalton T 47:17432–17440. https://doi.org/10.1039/C8DT03832E

    Article  CAS  Google Scholar 

  32. Tan JJ, Hao C, Wei NN, Zhang MX, Dai XY (2011) Time-dependent density functional theory study on the electronic excited-state hydrogen bonding dynamics of methyl acetate in aqueous solution. J Theor Comput Chem 10:393–400. https://doi.org/10.1142/S0219633611006529

    Article  CAS  Google Scholar 

  33. Sheng LY, Huangfu BH, Xu QH, Tian WL, Li ZJ, Meng A, Tan SQ (2020) A highly selective and sensitive fluorescent probe for detecting Cr(VI) and cell imaging based on nitrogen-doped graphene quantum dots. J Alloys Compd 820:153191. https://doi.org/10.1016/j.jallcom.2019.153191

  34. Yang M, Meng X, Li B (2017) N, S co-doped carbon dots with high quantum yield: tunable fluorescence in liquid/solid and extensible applications. J Nanopart Res 19(6):217. https://doi.org/10.1007/s11051-017-3914-7

    Article  CAS  Google Scholar 

  35. Liu S, Cui J, Huang J (2019) Facile one-pot synthesis of highly fluorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr(VI) ions. Spectrochim Acta Part A Mol Biomol Spectrosc 206:65–71. https://doi.org/10.1016/j.saa.2018.07.082

    Article  CAS  Google Scholar 

  36. Xun L, Qiao J, Qi L (2015) Polyacrylamide-protected gold nanoparticles for the determination of manganese ions. Anal Methods 7(23):9906–9911. https://doi.org/10.1039/C5AY02483H

    Article  CAS  Google Scholar 

  37. He Y, Zhang X (2016) Ultrasensitive colorimetric detection of manganese (II) ions based on anti-aggregation of unmodified silver nanoparticles. Sens Actuators, B Chem 222:320–324. https://doi.org/10.1016/j.snb.2015.08.089

    Article  CAS  Google Scholar 

  38. Wei J, Chen J, Yue G (2018) Development of a novel tridentate ligand for colorimetric detection of Mn(II) based on AgNPs. Spectrochim Acta Part A Mol Biomol Spectrosc 202:244–251. https://doi.org/10.1016/j.saa.2018.05.033

    Article  CAS  Google Scholar 

  39. Abd Elhaleem SM, Shalan S, Belal F, Elsebaei F (2022) Insights for applying N, S-doped carbon dots as a fluorescent nanoprobe for estimation of some nitro-calcium channel blockers. Royal Society Open Science 9(10):220609. https://doi.org/10.1098/rsos.220609

  40. Zhang JY, Wu SH, Lu XM, Wu P, Liu JW (2019) Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett 19(5):3214–3220. https://doi.org/10.1021/acs.nanolett.9b00725

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 42107085, 51878633), the “Fundamental Research Funds for the Central Universities”, the Postdoctoral Science Foundation of China (No. 2021M703006) and Postdoctoral Innovation Research Foundation of Hubei Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulun Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 653 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, H., Tian, X., Chen, W. et al. Simultaneous visual detection of multiple heavy metal ions by a high-throughput fluorescent probe. Microchim Acta 190, 311 (2023). https://doi.org/10.1007/s00604-023-05882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05882-0

Keywords

Navigation