Skip to main content

Advertisement

Log in

Label-free MXene-assisted field effect transistor for the determination of IL-6 in patients with kidney transplantation infection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A spiral interdigitated MXene–assisted field effect transistor (SiMFETs) was proposed for determination of IL-6 in patients with kidney transplantation infection. Our SiMFETs demonstrated enhanced IL-6 detection range of 10 fg/mL–100 ng/mL due to the combination of optimized transistor’s structure and semiconducting nanocomposites. Specifically, on one hand, MXene-based field effect transistor drastically amplified the amperometric signal for determination of IL-6; on the other hand, the multiple spiral structure of interdigitated drain-source architecture improved the transconductance of FET biosensor. The developed SiMFETs biosensor demonstrated satisfactory stability for 2 months, and favorable reproducibility and selectivity against other biochemical interferences. The SiMFETs biosensor exhibited acceptable correlation coefficient (R2=0.955) in quantification of clinical biosamples. The sensor successfully distinguished the infected patients from the health control with enhanced AUC of 0.939 (sensitivity of 91.7%, specificity of 86.7%). Those merits introduced here may pave an alternative strategy for transistor-based biosensor in point-of-care clinic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lim WH, Shingde M, Wong G (2019) Recurrent and de novo glomerulonephritis after kidney transplantation. Front Immunol 10:1944. https://doi.org/10.3389/fimmu.2019.01944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Câmara NOS, Iseki K, Kramer H et al (2017) Kidney disease and obesity: epidemiology, mechanisms and treatment. Nat Rev Nephrol 13:181–190. https://doi.org/10.1038/nrneph.2016.191

    Article  PubMed  Google Scholar 

  3. Leung N, Bridoux F, Hutchison CA et al (2012) Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood 120:4292–4295. https://doi.org/10.1182/blood-2012-07-445304

    Article  CAS  PubMed  Google Scholar 

  4. Pinter J, Hanson CS, Chapman JR et al (2017) Perspectives of older kidney transplant recipients on kidney transplantation. Clin J Am Soc Nephrol 12:443–453. https://doi.org/10.2215/CJN.05890616

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Chen HJ, Hang T et al (2018) Physical activation of innate immunity by spiky particles. Nat Nanotechnol 13:1078–1086. https://doi.org/10.1038/s41565-018-0274-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Willis EF, MacDonald KPA, Nguyen QH et al (2020) Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 180:833–846.e16. https://doi.org/10.1016/j.cell.2020.02.013

    Article  CAS  PubMed  Google Scholar 

  7. Adrover-Jaume C, Alba-Patiño A, Clemente A et al (2021) Paper biosensors for detecting elevated IL-6 levels in blood and respiratory samples from COVID-19 patients. Sensors Actuators B Chem 330:129333. https://doi.org/10.1016/j.snb.2020.129333

  8. Chen X, Dong T, Wei X et al (2019) Electrochemical methods for detection of biomarkers of chronic obstructive pulmonary disease in serum and saliva. Biosens Bioelectron 142:111453. https://doi.org/10.1016/j.bios.2019.111453

    Article  CAS  PubMed  Google Scholar 

  9. Zhang R, Le B, Xu W et al (2019) Magnetic “Squashing” of circulating tumor cells on plasmonic substrates for ultrasensitive NIR fluorescence detection. Small Methods 3:1–7. https://doi.org/10.1002/smtd.201800474

    Article  CAS  Google Scholar 

  10. Cheong J, Yu H, Lee CY et al (2020) Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat Biomed Eng 4:1159–1167. https://doi.org/10.1038/s41551-020-00654-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li X, Kuznetsova T, Cauwenberghs N et al (2017) Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive. Proc Natl Acad Sci USA 114:7089–7094. https://doi.org/10.1073/pnas.1621457114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He F, Liu H, Guo X et al (2017) Direct exosome quantification via bivalent-cholesterol-labeled DNA anchor for signal amplification. Anal Chem 89:12968–12975. https://doi.org/10.1021/acs.analchem.7b03919

    Article  CAS  PubMed  Google Scholar 

  13. Chen G (2017) The relationship between the expression of TAM, survivin and the degree of necrosis of the tumor after cisplatin treatment in osteosarcoma. Eur Rev Med Pharmacol Sci 21:490–497

    CAS  PubMed  Google Scholar 

  14. Cheng X, Wang B, Zhao Y et al (2020) A mediator-free electroenzymatic sensing methodology to mitigate ionic and electroactive interferents’ effects for reliable wearable metabolite and nutrient monitoring. Adv Funct Mater 30. https://doi.org/10.1002/adfm.201908507

  15. Liu Q, Aroonyadet N, Song Y et al (2016) Highly sensitive and quick detection of acute myocardial infarction biomarkers using In2O3 nanoribbon biosensors fabricated using shadow masks. ACS Nano 10:10117–10125. https://doi.org/10.1021/acsnano.6b05171

    Article  CAS  PubMed  Google Scholar 

  16. Guo K, Wustoni S, Koklu A et al (2021) Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat Biomed Eng 5:666–677. https://doi.org/10.1038/s41551-021-00734-9

    Article  CAS  PubMed  Google Scholar 

  17. Liu N, Xiang X, Fu L et al (2021) Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains. Biosens Bioelectron 188. https://doi.org/10.1016/j.bios.2021.113340

  18. Kwak YH, Choi DS, Kim YN et al (2012) Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens Bioelectron 37:82–87. https://doi.org/10.1016/j.bios.2012.04.042

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Sun C, Zhang C et al (2021) Organic field-effect transistor-based biosensors with enhanced sensitivity and reliability under illumination for carcinoembryonic antigen bioassay. Anal Chem 93:15167–15174. https://doi.org/10.1021/acs.analchem.1c03683

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Liu T, Yang M et al (2021) A handheld testing device for the fast and ultrasensitive recognition of cardiac troponin I via an ion-sensitive field-effect transistor. Biosens Bioelectron 193. https://doi.org/10.1016/j.bios.2021.113554

  21. Wang F, Jiang J, Liu Q et al (2020) Piezopotential gated two-dimensional InSe field-effect transistor for designing a pressure sensor based on piezotronic effect. Nano Energy 70:104457. https://doi.org/10.1016/j.nanoen.2020.104457

    Article  CAS  Google Scholar 

  22. Adinolfi V, Sargent EH (2017) Photovoltage field-effect transistors. Nature 542:324–327. https://doi.org/10.1038/nature21050

    Article  CAS  PubMed  Google Scholar 

  23. Bu L, Hu M, Lu W et al (2018) Printing semiconductor–insulator polymer bilayers for high-performance coplanar field-effect transistors. Adv Mater 30:1–9. https://doi.org/10.1002/adma.201704695

    Article  CAS  Google Scholar 

  24. Park SJ, Kwon OS, Lee SH et al (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12:5082–5090. https://doi.org/10.1021/nl301714x

    Article  CAS  PubMed  Google Scholar 

  25. Qin L, Tao Q, El Ghazaly A et al (2018) High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Adv Funct Mater 28. https://doi.org/10.1002/adfm.201703808

  26. Mojtabavi M, Vahidmohammadi A, Liang W et al (2019) Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano 13:3042–3053. https://doi.org/10.1021/acsnano.8b08017

    Article  CAS  PubMed  Google Scholar 

  27. Song M, Pang SY, Guo F et al (2020) Fluoride-free 2D niobium carbide MXenes as stable andbiocompatible nanoplatforms for electrochemical biosensors with ultrahigh sensitivity. Adv Sci 7:1–8. https://doi.org/10.1002/advs.202001546

    Article  CAS  Google Scholar 

  28. Ghaemmaghami M, Yamini Y, Mousavi KZ (2020) Accordion-like Ti3C2Tx MXene nanosheets as a high-performance solid phase microextraction adsorbent for determination of polycyclic aromatic hydrocarbons using GC-MS. Microchim Acta 187:1–8. https://doi.org/10.1007/s00604-020-4123-0

    Article  CAS  Google Scholar 

  29. Lei Y, Zhao W, Zhang Y et al (2019) A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15:1901190

    Article  Google Scholar 

  30. Liu H, Duan C, Yang C et al (2015) A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors Actuators B Chem 218:60–66

    Article  CAS  Google Scholar 

  31. Wu Q, Li N, Wang Y et al (2019) A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens Bioelectron 144:111697

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Li H, Huang Y et al (2019) A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosens Bioelectron 142:111531

    Article  CAS  PubMed  Google Scholar 

  33. Xu B, Zhu M, Zhang W et al (2016) Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 28:3333–3339. https://doi.org/10.1002/adma.201504657

    Article  CAS  PubMed  Google Scholar 

  34. Tertis M, Leva PI, Bogdan D et al (2019) Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosens Bioelectron 137:123–132. https://doi.org/10.1016/j.bios.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  35. Wang F, Yang C, Duan M et al (2015) TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectron 74:1022–1028. https://doi.org/10.1016/j.bios.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  36. Li Q, Zhong B, Zhang W et al (2019) Ti(3)C(2) MXene as a new nanofiller for robust and conductive elastomer composites. Nanoscale 11:14712–14719. https://doi.org/10.1039/c9nr03661j

    Article  CAS  PubMed  Google Scholar 

  37. Mashtalir O, Naguib M, Mochalin VN et al (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4. https://doi.org/10.1038/ncomms2664

  38. Kumar R, Ranwa S, Kumar G (2020) Biodegradable flexible substrate based on chitosan/PVP blend polymer for disposable electronics device applications. J Phys Chem B 124:149–155. https://doi.org/10.1021/acs.jpcb.9b08897

    Article  CAS  PubMed  Google Scholar 

  39. Veeralingam S, Badhulika S (2020) Surface functionalized β-Bi2O3 nanofibers based flexible, field-effect transistor-biosensor (BioFET) for rapid, label-free detection of serotonin in biological fluids. Sensors Actuators B Chem 321. https://doi.org/10.1016/j.snb.2020.128540

  40. Le Gall J, Mouillard F, Le TN et al (2020) Monitoring photosynthetic microorganism activity with an electrolyte-gated organic field effect transistor. Biosens Bioelectron 157. https://doi.org/10.1016/j.bios.2020.112166

  41. Mao S, Chang J, Pu H et al (2017) Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem Soc Rev 46:6872–6904. https://doi.org/10.1039/c6cs00827e

    Article  CAS  PubMed  Google Scholar 

  42. Fang Y, Meng L, Prominski A et al (2020) Recent advances in bioelectronics chemistry. Chem Soc Rev 49:7978–8035. https://doi.org/10.1039/d0cs00333f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shao B, Song Z, Chen X et al (2021) Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output. ACS Nano 15:7472–7481. https://doi.org/10.1021/acsnano.1c00891

    Article  CAS  PubMed  Google Scholar 

  44. Negahdary M (2020) Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: a review. Biosens Bioelectron 152:112018. https://doi.org/10.1016/j.bios.2020.112018

    Article  CAS  PubMed  Google Scholar 

  45. Bischak CG, Flagg LQ, Yan K et al (2019) Fullerene active layers for n-type organic electrochemical transistors. ACS Appl Mater Interfaces 11:28138–28144. https://doi.org/10.1021/acsami.9b11370

    Article  CAS  PubMed  Google Scholar 

  46. Yu Y, Ma Q, Ling H et al (2019) Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv Funct Mater 29:1–31. https://doi.org/10.1002/adfm.201904602

    Article  CAS  Google Scholar 

  47. Zhang R, Rejeeth C, Xu W et al (2019) Label-free electrochemical sensor for CD44 by ligand-protein interaction. Anal Chem 91:7078–7085. https://doi.org/10.1021/acs.analchem.8b05966

  48. Biswas S, Chen Y, Xie Y et al (2020) Ultrasmall Au(0) inserted hollow PCN-222 MOF for the high-sensitive detection of estradiol. Anal Chem 92:4566–4572. https://doi.org/10.1021/acs.analchem.9b05841

    Article  CAS  PubMed  Google Scholar 

  49. Xie K, Wang N, Lin X et al (2020) Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. Elife 9. https://doi.org/10.7554/eLife.50345

  50. Dalila NR, Arshad MKM, Gopinath SCB et al (2020) Molybdenum disulfide—gold nanoparticle nanocomposite in field-effect transistor back-gate for enhanced C-reactive protein detection. Microchim Acta 187. https://doi.org/10.1007/s00604-020-04562-7

  51. Azizi SN, Ghasemi S, Kavian S (2014) Synthesis and characterization of NaX nanozeolite using stem sweep as silica source and application of Ag-modified nanozeolite in electrocatalytic reduction of H2O2. Biosens Bioelectron 62:1–7. https://doi.org/10.1016/j.bios.2014.05.070

    Article  CAS  PubMed  Google Scholar 

  52. Zeng X, Ma S, Bao J et al (2013) Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing. Anal Chem 85:11720–11724. https://doi.org/10.1021/ac403408y

    Article  CAS  PubMed  Google Scholar 

  53. Su H, Li X, Huang L et al (2021) Plasmonic alloys reveal a distinct metabolic phenotype of early gastric cancer. Adv Mater 33(17):2007978. https://doi.org/10.1002/adma.202007978

    Article  CAS  Google Scholar 

  54. Wan H, Merriman C, Atkinson MA et al (2017) Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform. Proc Natl Acad Sci USA 114:10196–10201. https://doi.org/10.1073/pnas.1711169114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sauer U, Schicker A, Tyerman J et al (2012) Radio-wave heating of iron oxide. Science 336:604–608

    Article  Google Scholar 

Download references

Funding

This research was funded by the Natural Science Foundation of China (81800657, 81770748 and 81900680).

Author information

Authors and Affiliations

Authors

Contributions

Dawei Li: conceptualization, methodology, investigation, writing-original draft, formal analysis. Yaofei Ren: investigation, writing-original draft. Ruoyang Chen: writing-original draft. Haoyu Wu: software. Shaoyong Zhuang: characterizations. Ming Zhang: supervision, writing—review and editing. Dawei li and Yaofei Ren contributed equally this work.

Corresponding author

Correspondence to Ming Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

The online version contains supplementary material available at https://doi.org/xxx. (DOCX 20084 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Ren, Y., Chen, R. et al. Label-free MXene-assisted field effect transistor for the determination of IL-6 in patients with kidney transplantation infection. Microchim Acta 190, 284 (2023). https://doi.org/10.1007/s00604-023-05814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05814-y

Keywords

Navigation