Skip to main content
Log in

A signal “on–off-on”-type electrochemiluminescence aptamer sensor for detection of sulfadimethoxine based on Ru@Zn-oxalate MOF composites

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An “on–off-on”-type electrochemiluminescence (ECL) aptamer sensor based on Ru@Zn-oxalate metal–organic framework (MOF) composites is constructed for sensitive detection of sulfadimethoxine (SDM). The prepared Ru@Zn-oxalate MOF composites with the three-dimensional structure provide good ECL performance for the “signal-on.” The MOF structure with a large surface area enables the material to fix more Ru(bpy)32+. Moreover, the Zn-oxalate MOF with three-dimensional chromophore connectivity provides a medium which can accelerate excited-state energy transfer migration among Ru(bpy)32+ units, and greatly reduces the influence of solvent on chromophore, achieving a high-energy Ru emission efficiency. The aptamer chain modified with ferrocene at the end can hybridize with the capture chain DNA1 fixed on the surface of the modified electrode through base complementary pairing, which can significantly quench the ECL signal of Ru@Zn-oxalate MOF. SDM specifically binds to its aptamer to separate ferrocene from the electrode surface, resulting in a “signal-on” ECL signal. The use of the aptamer chain further improves the selectivity of the sensor. Thus, high-sensitivity detection of SDM specificity is realized through the specific affinity between SDM and its aptamer. This proposed ECL aptamer sensor has good analytical performance for SDM with low detection limit (27.3 fM) and wide detection range (100 fM–500 nM). The sensor also shows excellent stability, selectivity, and reproducibility, which proved its analytical performance. The relative standard deviation (RSD) of SDM detected by the sensor is between 2.39 and 5.32%, and the recovery is in the range 97.23 to 107.5%. The sensor shows satisfactory results in the analysis of actual seawater samples, which is expected to play a role in the exploration of marine environmental pollution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

References

  1. Singh R, Sidhu SS, Zhang H, Huang Q (2015) Removal of sulfadimethoxine in soil mediated by extracellular oxidoreductases[J]. Environ Sci Pollut Res 22(21):16868–16874. https://doi.org/10.1007/s11356-015-4893-9

    Article  CAS  Google Scholar 

  2. Park JY, Huwe B (2016) Sulfadimethoxine transport in soil columns in relation to sortable and non-sorbable tracers[J]. Environ Sci Pollut Res 23(12):12456–12466. https://doi.org/10.1007/s11356-016-6449-z

    Article  CAS  Google Scholar 

  3. Okoth OK, Yan K, Liu Y, Zhang J (2016) Graphene-doped Bi2S3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection[J]. Biosens Bioelectron 86:636–642. https://doi.org/10.1016/j.bios.2016.07.037

    Article  CAS  PubMed  Google Scholar 

  4. Liu Q, Shi T, Cheng Y, Wen Z, Ding C, Li Y, Wang K (2021) Amplified photocurrent signal for fabricating photoelectrochemical sulfadimethoxine aptasensor based on carbon nitride photosensitization with visible/near-infrared light responsive zinc phthalocyanine[J]. J Hazard Mater 406:124749. https://doi.org/10.1016/j.jhazmat.2020.124749

    Article  CAS  PubMed  Google Scholar 

  5. You F, Zhu M, Ding L, Xu Y, Wang K (2019) Design and construction of Z-scheme Bi2S3/nitrogen-doped graphene quantum dots: boosted photoelectric conversion efficiency for high-performance photoelectrochemical aptasensing of sulfadimethoxine[J]. Biosens Bioelectron 130:230–235. https://doi.org/10.1016/j.bios.2019.01.058

    Article  CAS  PubMed  Google Scholar 

  6. Dang X, Zhao H, Wang X, Sailijiang T, Chen S, Quan X (2018) Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide[J]. Microchim Acta 185(7):1–8. https://doi.org/10.1007/s00604-018-2877-4

    Article  CAS  Google Scholar 

  7. Li Y, Liu D, Meng S, Zhang J, Li L, You T (2022) Regulation of Ru (bpy)32+ electrochemiluminescence based on distance-dependent electron transfer of ferrocene for dual-signal readout detection of aflatoxin B1 with high sensitivity [J]. Anal Chem 94(2):1294–1301. https://doi.org/10.1021/acs.analchem.1c04501

    Article  CAS  PubMed  Google Scholar 

  8. Hao Q, Wang L, Niu S, Ding C, Luo X (2020) Ratiometric electrogenerated chemiluminescence sensor based on a designed anti-fouling peptide for the detection of carcinoembryonic antigen [J]. Anal Chim Acta 1136:134–140. https://doi.org/10.1016/j.aca.2020.09.033

    Article  CAS  PubMed  Google Scholar 

  9. Huang X, Deng X, Su K, Qi W (2021) Enhanced electrochemiluminescence of Au-Ag bimetallic nanocluster@ CNTs-TiO2 nanocomposites and its use in ultra-sensitive immunosensing for CEA [J]. New J Chem 45(29):13064–13069. https://doi.org/10.1039/D1NJ01409A

    Article  CAS  Google Scholar 

  10. Wei X, Qiao X, Fan J, Hao Y, Zhang Y, Zhou Y, Xu M (2022) A label-free ECL aptasensor for sensitive detection of carcinoembryonic antigen based on CdS QDs@MOF and TEOA@Au as bi-coreactants of Ru (bpy)32+ [J]. Microchem J 173:106910. https://doi.org/10.1016/j.microc.2021.106910

    Article  CAS  Google Scholar 

  11. Hu Y, Chen Y, Tang Q, Liu H (2021) A sandwich-type ECL immunosensor for the sensitive determination of CEA content based on red emission carbon quantum dots as luminophores [J]. New J Chem 45(28):12613–12621. https://doi.org/10.1039/D1NJ01002F

    Article  CAS  Google Scholar 

  12. Zhao XH, Shang L, Zhang W, Jia LP, Ma RN, Wang HS (2021) Sensitive detection of carcinoembryonic antigen based on a low-potential-triggered electrochemiluminescence of tris (2,2’-bipyridine) ruthenium(II) with oxalate as coreactant [J]. J Electroanal Chem 895:115392. https://doi.org/10.1016/j.jelechem.2021.115392

    Article  CAS  Google Scholar 

  13. Jiang D, Du X, Chen D, Zhou L, Chen W, Li Y, Hao N, Qian J, Liu Q, Wang K (2016) One-pot hydrothermal route to fabricate nitrogen doped graphene/Ag-TiO2: Efficient charge separation, and high-performance “on-off-on” switch system based photoelectrochemical biosensing [J]. Biosens Bioelectron 83:149–155. https://doi.org/10.1016/j.bios.2016.04.042

    Article  CAS  PubMed  Google Scholar 

  14. Zhao M, Zhuo Y, Chai YQ, Yuan R (2015) Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel “on-off-on” switch system [J]. Biomaterials 52:476–483. https://doi.org/10.1016/j.biomaterials.2015.02.058

    Article  CAS  PubMed  Google Scholar 

  15. Fan Y, Chen S, Wei S, Guo G, Li Y (2020) A simple “on–off–on” ECL sensor for glucose determination based on Pd nanowires and Ag doped gC3N4 nanosheets [J]. Anal Methods 12(1):8–17. https://doi.org/10.1039/C9AY02357G

    Article  CAS  Google Scholar 

  16. Xu R, Du Y, Ma H, Wu D, Ren X, Sun X, Wei Q, Ju H (2021) Photoelectrochemical aptasensor based on La2Ti2O7/Sb2S3 and V2O5 for effectively signal change strategy for cancer marker detection [J]. Biosens Bioelectron 192:113528. https://doi.org/10.1016/j.bios.2021.113528

    Article  CAS  PubMed  Google Scholar 

  17. Kitte SA, Bushira FA, Li H, Jin Y (2021) Electrochemiluminescence of Ru (bpy)32+/thioacetamide and its application for the sensitive determination of hepatotoxic thioacetamide [J]. Analyst 146(16):5198–5203. https://doi.org/10.1039/D1AN00862E

    Article  CAS  PubMed  Google Scholar 

  18. Asif M, Aziz A, Ashraf G, Wang Z, Wang J, Azeem M, Chen X, Xiao F, Liu H (2018) Facet-inspired core-shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids [J]. ACS Appl Mater Interfaces 10(43):36675–36685. https://doi.org/10.1021/acsami.8b12186

    Article  CAS  PubMed  Google Scholar 

  19. Asif M, Aziz A, Wang Z, Ashraf G, Wang J, Luo H, Chen X, Xiao F, Liu H (2019) Hierarchical CNTs@ CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells [J]. Anal Chem 91(6):3912–3920. https://doi.org/10.1021/acs.analchem.8b04685

    Article  CAS  PubMed  Google Scholar 

  20. Asif M, Aziz A, Ashraf G, Shuang D, Aziz A, Zhang G, Xiao F, Liu H (2018) Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids [J]. ACS Appl Mater Interfaces 10(43):36675–36685. https://doi.org/10.1016/j.snb.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  21. Asif M, Liu H, Aziz A, Wang H, Wang Z, Ajmal M, Xiao F, Liu H (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics [J]. Biosens Bioelectron 97:352–359. https://doi.org/10.1016/j.bios.2017.05.057

    Article  CAS  PubMed  Google Scholar 

  22. Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y, Xiao F, Liu H (2022) Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: A textile sensor for H2O2 detection in clinical cancer tissues [J]. Chem Eng J 427:131398. https://doi.org/10.1016/j.cej.2021.131398

    Article  CAS  Google Scholar 

  23. Asif M, Aziz A, Wang H, Wang Z, Wang W, Ajmal M, Xiao F, Chen X, Liu H (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid [J]. Microchim Acta 186:1–11. https://doi.org/10.1007/s00604-018-3158-y

    Article  CAS  Google Scholar 

  24. Hu GB, Xiong CY, Liang WB, Zeng XS, Xu HL, Yang Y, Yao LY, Yuan R, Xiao DR (2018) Highly stable mesoporous luminescence-functionalized MOF with excellent electrochemiluminescence property for ultrasensitive immunosensor construction [J]. ACS Appl Mater Interfaces 10(18):15913–15919. https://doi.org/10.1021/acsami.8b05038

    Article  CAS  PubMed  Google Scholar 

  25. Yang HY, Wang HJ, Xiong CY, Chai YQ, Yuan R (2017) Intramolecular self-enhanced nanochains functionalized by an electrochemiluminescence reagent and its immunosensing application for the detection of urinary β2-microglobulin [J]. ACS Appl Mater Interfaces 9(41):36239–36246. https://doi.org/10.1021/acsami.7b12011

    Article  CAS  PubMed  Google Scholar 

  26. Farah K, Müller-Plathe F, Böhm MC (2012) Classical reactive molecular dynamics implementations: state of the art [J]. ChemPhysChem 13(5):1127–1151. https://doi.org/10.1002/cphc.201100681

    Article  CAS  PubMed  Google Scholar 

  27. Vojoudi H, Bastan B, Ghasemi JB, Badiei A (2019) An ultrasensitive fluorescence sensor for determination of trace levels of copper in blood samples [J]. Anal Bioanal Chem 411:5593–5603. https://doi.org/10.1007/s00216-019-01940-w

    Article  CAS  PubMed  Google Scholar 

  28. Mohammadi ZG (2020) Green method for the synthesis of indeno [1, 2-B] pyridines using Fe3O4@sio2@ pr-So3H as nanomagnetic catalyst [J]. Iranian Journal of Catalysis 10(1):65–70

    Google Scholar 

  29. Vojoudi H, Ghasemi JB, Hajihosseinloo A, Bastan B, Badiei A (2021) One-pot synthesis of hematite-alumina hollow sphere composite by ultrasonic spray pyrolysis technique with high adsorption capacity toward PAHs [J]. Adv Powder Technol 32(4): 1060–1069.Bastan, B., & Badiei, A. https://doi.org/10.1016/j.apt.2021.02.015

  30. Modheji M, Emadi H, Vojoudi H (2020) Efficient pre-concentration of As (III) in food samples using guanidine-modified magnetic mesoporous silica [J]. J Porous Mater 27:971–978. https://doi.org/10.1007/s10934-020-00873-5

    Article  CAS  Google Scholar 

  31. Vojoudi H, Badiei A, Vojoudi E (n.d.) System and method for treating chemical byproducts using ultrasonic irradiation: U.S. Patent Application 16/600,459[P]. 2021–4–15

  32. Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen AH, Maurin G, Eddaoudi M (2017) Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship [J]. Chem Soc Rev 46(11):3402–3430. https://doi.org/10.1039/C7CS00153C

    Article  CAS  PubMed  Google Scholar 

  33. Qiao X, Su B, Liu C, Song Q, Luo D, Mo G, Wang T (2018) Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@ MOF structure [J]. Adv Mater 30(5):1702275. https://doi.org/10.1002/adma.201702275

    Article  CAS  Google Scholar 

  34. Hu PP (2017) Recent advances in aptamers targeting immune system [J]. Inflammation 40(1):295–302. https://doi.org/10.1007/s10753-016-0437-9

    Article  CAS  PubMed  Google Scholar 

  35. You H, Bai L, Yuan Y, Zhou J, Bai Y, Mu Z (2018) An amperometric aptasensor for ultrasensitive detection of sulfadimethoxine based on exonuclease-assisted target recycling and new signal tracer for amplification. Biosens Bioelectron 117:706–712. https://doi.org/10.1016/j.bios.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  36. Zhao G, Wang Y, Li X, Yue Q, Dong X, Du B, Cao W, Wei Q (2019) Dual-quenching electrochemiluminescence strategy based on three-dimensional metal-organic frameworks for ultrasensitive detection of amyloid-β [J]. Anal Chem 91(3):1989–1996. https://doi.org/10.1021/acs.analchem.8b04332

    Article  CAS  PubMed  Google Scholar 

  37. Bai W, Cui A, Liu M, Qiao X, Li Y, Wang T (2019) Signal-off electrogenerated chemiluminescence biosensing platform based on the quenching effect between ferrocene and Ru(bpy)32+-functionalized metal-organic frameworks for the detection of methylated RNA [J]. Anal Chem 91(18):11840–11847. https://doi.org/10.1021/acs.analchem.9b02569

    Article  CAS  PubMed  Google Scholar 

  38. Kent CA, Liu D, Ito A, Zhang T, Brennaman MK, Meyer TJ, Lin W (2013) Rapid energy transfer in non-porous metal-organic frameworks with caged Ru (bpy)32+ chromophores: oxygen trapping and luminescence quenching [J]. J Mater Chem A 1(47):14982–14989. https://doi.org/10.1039/C3TA14009A

    Article  CAS  Google Scholar 

  39. Feng Y, Sun F, Wang N, Lei J, Ju H (2017) Ru (bpy) 32+ incorporated luminescent polymer dots: double-enhanced electrochemiluminescence for detection of single-nucleotide polymorphism[J]. Anal Chem 89(14):7659–7666. https://doi.org/10.1021/acs.analchem.7b01603

    Article  CAS  PubMed  Google Scholar 

  40. Xu Z, Chang Y, Chai Y, Wang H, Yuan R (2019) Ultrasensitive electrochemiluminescence biosensor for speedy detection of microRNA based on a DNA rolling machine and target recycling [J]. Anal Chem 91(7):4883–4888. https://doi.org/10.1021/acs.analchem.9b00728

    Article  CAS  PubMed  Google Scholar 

  41. Turco A, Corvaglia S, Mazzotta E (2015) Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters [J]. Biosens Bioelectron 63:240–247. https://doi.org/10.1016/j.bios.2014.07.045

    Article  CAS  PubMed  Google Scholar 

  42. Bai Z, Chen Y, Li F, Zhou Y, Yin H, Ai S (2019) Electrochemical aptasensor for sulfadimethoxine detection based on the triggered cleavage activity of nuclease P1 by aptamer-target complex [J]. Talanta 204:409–414. https://doi.org/10.1016/j.talanta.2019.06.035

    Article  CAS  PubMed  Google Scholar 

  43. Yang Z, Ding X, Guo Q, Wang Y, Lu Z, Ou H, Luo Z, Luo X (2017) Second generation of signaling-probe displacement electrochemical aptasensor for detection of picomolar ampicillin and sulfadimethoxine [J]. Sens Actuators B Chem 253:1129–1136. https://doi.org/10.1016/j.snb.2017.07.119

    Article  CAS  Google Scholar 

  44. Wang A, Zhao H, Chen X, Tan B, Zhang Y, Quan X (2017) A colorimetric aptasensor for sulfadimethoxine detection based on peroxidase-like activity of graphene/nickel@palladium hybrids [J]. Anal Biochem 525:92–99. https://doi.org/10.1016/j.ab.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  45. Song KM, Jeong E, Jeon W, Jo H, Ban C (2012) A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine [J]. Biosens Bioelectron 33(1):113–119. https://doi.org/10.1016/j.bios.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  46. Razmi N, Baradaran B, Hejazi M, Hasanzadeh M, Mosafer J, Mokhtarzadeh A, de la Guardia M (2018) Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens Bioelectron 113:58–71. https://doi.org/10.1016/j.bios.2018.04.048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51973102), Natural Science Foundation of Shandong (ZR2022MB042, ZR2019MB067), Qinghai Provincial Basic Research Program (2021-ZJ-710), Innovation Ability Improvement Project of Science and Technology Small and Medium-Size Enterprise in Shandong Province (2022TSGC1121) and Talent Fund of QUST (2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Nie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 329 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, X., Zheng, L. et al. A signal “on–off-on”-type electrochemiluminescence aptamer sensor for detection of sulfadimethoxine based on Ru@Zn-oxalate MOF composites. Microchim Acta 190, 131 (2023). https://doi.org/10.1007/s00604-023-05701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05701-6

Keywords

Navigation