Skip to main content

Advertisement

Log in

Photoelectrochemical immunosensor for HER2 detection based on BiVO4-Bi2S3 heterojunction as photoactive material and CdS as signal probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwiched photoelectrochemical (PEC) sensor was developed for sensitive detection of human epidermal growth factor receptor 2 (HER2) based on BiVO4-Bi2S3 heterojunction as the photoelectric material accompanied with magnetic nanoparticles for enrichment of HER2 and CdS for signal amplification. The in situ generation of Bi2S3 on the surface of BiVO4 forming a BiVO4-Bi2S3 heterojunction is more conducive to the transit of electron–hole pairs. Antibody-modified MNs are utilized to capture and separate HER2 from samples. After forming a sandwich immune structure, under illumination, the photocurrent shows an increasing trend with the increment of HER2 concentration. The PEC immunosensor displays a good linear concentration range between 1.00 and 1.00 × 103 pg·mL−1 and a low limit of detection down to 0.680 pg·mL−1 (S/N = 3) for HER2 under a bias voltage of 0.1 V (vs. Ag/AgCl electrode). Furthermore, the sensor was successfully applied to detect HER2 in serum samples with recoveries that ranged between 96.1 and 114% with RSDs between 1.3 and 5.9%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hamilton E, Shastry M, Shiller SM et al (2021) Targeting HER2 heterogeneity in breast cancer Cancer. Treat Rev 100:102286. https://doi.org/10.1016/j.ctrv.2021.102286

    Article  CAS  Google Scholar 

  2. Arya SK, Zhurauski P, Jolly P et al (2018) Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens Bioelectron 102:106–112. https://doi.org/10.1016/j.bios.2017.11.013

    Article  CAS  Google Scholar 

  3. Floros KV, Jacob S, Kurupi R et al (2021) Targeting transcription of MCL-1 sensitizes HER2-amplified breast cancers to HER2 inhibitors. Cell Death Dis 12:179. https://doi.org/10.1038/s41419-021-03457-6

    Article  CAS  Google Scholar 

  4. Dong YR, Li W, Gu ZK et al (2019) Inhibition of HER2-positive breast cancer growth by blocking the HER2 signaling pathway with HER2 glycan-imprinted nanoparticles. Angew Chem Int Ed 58:10621–10625. https://doi.org/10.1002/anie.201904860

    Article  CAS  Google Scholar 

  5. Grimm EV, Allison KH, Hicks DG et al (2021) HER2 testing: insights from pathologists’ perspective on technically challenging HER2 FISH cases. Appl Immunohistochem Mol Morphol 29:635–642. https://doi.org/10.1097/PAI.0000000000000946

    Article  CAS  Google Scholar 

  6. Capobianco JA, Shih WY, Adams GP et al (2011) Label-free Her2 detection and dissociation constant assessment in diluted human serum using a longitudinal extension mode of a piezoelectric microcantilever sensor. Sens Actuators B Chem 160:349–356. https://doi.org/10.1016/j.snb.2011.07.060

    Article  CAS  Google Scholar 

  7. Loo L, Capobianco JA, Wu W et al (2011) Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Anal Chem 83:3392–3397. https://doi.org/10.1021/ac103301r

    Article  CAS  Google Scholar 

  8. Luo J, Liang D, Li X et al (2021) Photoelectrochemical detection of human epidermal growth factor receptor 2 (HER2) based on Co3O4-ascorbic acid oxidase as multiple signal amplifier. Microchim Acta 188:166. https://doi.org/10.1007/s00604-021-04829-7

    Article  CAS  Google Scholar 

  9. Yang S, You M, Zhang F et al (2018) A sensitive electrochemical aptasensing platform based on exonuclease recycling amplification and host-guest recognition for detection of breast cancer biomarker HER2. Sens Actuators B Chem 258:796–802. https://doi.org/10.1016/j.snb.2017.11.119

    Article  CAS  Google Scholar 

  10. Tabasi A, Noorbakhsh A, Sharifi E (2017) Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron 95:117–123. https://doi.org/10.1016/j.bios.2017.04.020

    Article  CAS  Google Scholar 

  11. Mehmet LY (2021) Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. Microchim Acta 188:78. https://doi.org/10.1007/s00604-021-04735-y

    Article  CAS  Google Scholar 

  12. Shen CC, Zeng K, Luo JJ et al (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89:10264–10269. https://doi.org/10.1021/acs.analchem.7b01747

    Article  CAS  Google Scholar 

  13. Sharma S, Zapatero-Rodriguez J, Saxena R et al (2018) Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 106:78–85. https://doi.org/10.1016/j.bios.2018.01.056

    Article  CAS  Google Scholar 

  14. Ravalli A, da Rocha CG, Yamanaka H et al (2015) A label-free electrochemical affisensor for cancer marker detection: the case of HER2. Bioelectrochemistry 106:268–275. https://doi.org/10.1016/j.bioelechem.2015.07.010

    Article  CAS  Google Scholar 

  15. Qureshi A, Gurbuz Y, Niazi JH (2015) Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sens Actuators B Chem 220:1145–1151. https://doi.org/10.1016/j.snb.2015.06.094

    Article  CAS  Google Scholar 

  16. Niazi JH, Verma SK, Niazi S et al (2015) In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection. Analyst 140:243–249. https://doi.org/10.1039/c4an01665c

    Article  CAS  Google Scholar 

  17. Tian S, Zeng K, Yang A et al (2017) A copper based enzyme-free fluorescence ELISA for HER2 detection. J Immunol Methods 451:78–82. https://doi.org/10.1016/j.jim.2017.09.002

    Article  CAS  Google Scholar 

  18. Martin V, Sullivan B, Walker K et al (2006) Surface plasmon resonance investigations of human epidermal growth factor receptor 2. Appl Spectrosc 60:994–1003. https://doi.org/10.1366/000370206778397498

    Article  CAS  Google Scholar 

  19. Wang J, Long J, Liu Z et al (2017) Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens Bioelectron 91:53–59. https://doi.org/10.1016/j.bios.2016.12.029

    Article  CAS  Google Scholar 

  20. Chang J, Lv W, Wu J et al (2021) Simultaneous photoelectrochemical detection of dual microRNAs by capturing CdS quantum dots and methylene blue based on target-initiated strand displaced amplification. Chin Chem Letters 32:775–778. https://doi.org/10.1016/j.cclet.2020.05.041

    Article  CAS  Google Scholar 

  21. Dai H, Zhang S, Hong Z et al (2016) A potentiometric addressable photoelectrochemical biosensor for sensitive detection of two biomarkers. Anal Chem 88:9532–9538. https://doi.org/10.1021/acs.analchem.6b02101

    Article  CAS  Google Scholar 

  22. Wang W, Wang X, Zhou C et al (2017) Bi2S3-nanowire-sensitized BiVO4 sheets for enhanced visible-light photoelectrochemical activities. J Phys Chem C 121:19104–19111. https://doi.org/10.1021/acs.jpcc.7b06838

    Article  CAS  Google Scholar 

  23. Chen HQ, Lin LY, Chen SL (2018) Direct growth of BiVO4/Bi2S3 nanorod array on conductive glass as photocatalyst for enhancing the photoelectrochemical performance. ACS Appl Energy Mater 1:6089–6100. https://doi.org/10.1021/acsaem.8b01146

    Article  CAS  Google Scholar 

  24. Hu J, Zhang F, Yang Y et al (2020) In situ preparation of Bi2S3 nanoribbon-anchored BiVO4 nanoscroll heterostructures for the catalysis of Cr(VI) photoreduction. Catal Sci Technol 10:3843–3847. https://doi.org/10.1039/d0cy00006j

    Article  CAS  Google Scholar 

  25. Li X, Cui K, Xiu M et al (2022) In-situ growth of WO3/BiVO4 nanoflowers onto cellulose fibers to construct photoelectrochemical/colorimetric labon-paper device for ultrasensitive detection of AFP. J Mater Chem B 10:4031–4039. https://doi.org/10.1039/D2TB00297C

    Article  CAS  Google Scholar 

  26. Ye C, Xu S, Wu Z et al (2022) Cu3(PO4)2/BiVO4 photoelectrochemical sensor for sensitive and selective determination of synthetic antioxidant propyl gallate. Anal Bioanal Chem 414:4139–4147. https://doi.org/10.1007/s00216-022-04065-9

    Article  CAS  Google Scholar 

  27. Kodan N, Ahmad M, Mehta BR (2021) Charge carrier separation and enhanced PEC properties of BiVO4 based heterojunctions having ultrathin overlayersInter. J Hydrogen Energy 46:189–196. https://doi.org/10.1016/j.ijhydene.2020.09.096

    Article  CAS  Google Scholar 

  28. Fang G, Liu Z, Han C (2020) Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts. Appl Surf Sci 515:146095. https://doi.org/10.1016/j.apsusc.2020.146095

    Article  CAS  Google Scholar 

  29. Bai S, Li Q, Han N et al (2020) Synthesis of novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties. J Colloid Interface Sci 567:37–44. https://doi.org/10.1016/j.jcis.2020.01.104

    Article  CAS  Google Scholar 

  30. Wang M, Wang Q, Guo P et al (2019) In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting. J Colloid Interface Sci 534:338–342. https://doi.org/10.1016/j.jcis.2018.09.056

    Article  CAS  Google Scholar 

  31. Liu CJ, Li J, Li YM et al (2015) Epitaxial growth of Bi2S3 nanowires on BiVO4 nanostructures for enhancing photoelectrochemical performance. RSC Adv 5:71692–71698. https://doi.org/10.1039/C5RA13171E

    Article  CAS  Google Scholar 

  32. Li YJ, Ma MJ, Zhu JJ (2012) Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-Fetoprotein. Anal Chem 84:10492–10499. https://doi.org/10.1021/ac302853y

    Article  CAS  Google Scholar 

  33. Xu R, Jiang Y, Xia L et al (2015) A sensitive photoelectrochemical biosensor for AFP detection based on ZnO inverse opal electrodes with signal amplification of CdS-QDs. Biosens Bioelectron 74:411–417. https://doi.org/10.1016/j.bios.2015.06.037

    Article  CAS  Google Scholar 

  34. Liu YX, Ma HG, Zhang Y et al (2016) Visible light photoelectrochemical aptasensor for adenosine detection based on CdS/PPy/g-C3N4 nanocomposites. Biosens Bioelectron 86:439–445. https://doi.org/10.1016/j.bios.2016.06.089

    Article  CAS  Google Scholar 

  35. Zhou H, Han T, Wei Q et al (2016) Efficient enhancement of electrochemiluminescence from cadmium sulfide quantum dots by glucose oxidase mimicking gold nanoparticles for highly sensitive assay of methyltransferase activity. Anal Chem 88:2976–2983. https://doi.org/10.1021/acs.analchem.6b00450

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful for the support of this work by the National Natural Science Foundation of China (No.22064010, 22174163 and 51862014), the Natural Science Foundation of Jiangxi Province (20202ACBL213009, and 20212BAB203019) and Research Foundation of Education Bureau of Hunan Province, China (No.19A346).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Qian, Minghui Yang or Limin Lu.

Ethics declarations

Ethical approval

All experiments were in accordance with the guidelines of the National Institute of Health, China, and approved by the Institutional Ethical Committee (IEC) of Central South University. We also obtained informed consent for any experimentation with human serum samples. Experimental dates of this article were available and applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 627 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Wang, S., Qian, Y. et al. Photoelectrochemical immunosensor for HER2 detection based on BiVO4-Bi2S3 heterojunction as photoactive material and CdS as signal probe. Microchim Acta 190, 67 (2023). https://doi.org/10.1007/s00604-022-05628-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05628-4

Keywords

Navigation