Skip to main content
Log in

Utilizing inner filter effect in resonance Rayleigh scattering technique: a case study with silver nanocubes as RRS probe and several analytes as absorbers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

It was demonstrated that the mechanism of the inner filter effect (IFE) can emerge well in the resonance Rayleigh scattering (RRS) technique and be utilized as a new analytical method in the design of innovative IFE-based sensors. To prove this process, silver nanocubes (Ag NCs) with tunable extinction spectra were selected as RRS probes, and three analytes, doxorubicin (DOX), sunitinib (SUN), and Alizarin Red S (ARS), were considered as the typical absorbers. In addition, in the presence of SUN as a typical analyte, the quenching of the RRS signal of Ag NCs, with λmax of 419 nm, was linear in the range 0.01 to 2.5 µM of SUN. The limit of detection (LOD) was 0.0025 µM. The introduced method was then used to develop a dual-signal assay for the ratiometric determination of Al3+ ions. The suggested dual-signal assay was based on the color changes of ARS caused by Al3+ and the IFE between ARS and Ag NCs. The obtained results showed that the two characteristics of response sensitivity and linear dynamic range are very satisfactory for sensing Al3+ ions. The findings of this study demonstrate that the newly developed IFE mechanism can be employed as an attractive and highly efficient analytical technique for measuring different analytes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gong D, Zhu X, Tian Y, Han S-C, Deng M, Iqbal A, Liu W, Qin W, Guo H (2017) A phenylselenium-substituted BODIPY fluorescent turn-off probe for fluorescence imaging of hydrogen sulfide in living cells. Anal Chem 89(3):1801–1807. https://doi.org/10.1021/acs.analchem.6b04114

    Article  CAS  Google Scholar 

  2. Knoppe S, Verbiest T (2017) Resonance enhancement of nonlinear optical scattering in monolayer-protected gold clusters. J Am Chem Soc 139(42):14853–14856. https://doi.org/10.1021/jacs.7b08338

    Article  CAS  Google Scholar 

  3. Lu D, Lei J, Wang L, Zhang J (2012) Multifluorescently traceable nanoparticle by a single-wavelength excitation with color-related drug release performance. J Am Chem Soc 134(21):8746–8749. https://doi.org/10.1021/ja301691j

    Article  CAS  Google Scholar 

  4. Siriwardana K, Nettles CB, Vithanage BC, Zhou Y, Zou S, Zhang D (2016) On-resonance fluorescence, resonance Rayleigh scattering, and ratiometric resonance synchronous spectroscopy of molecular-and quantum dot-fluorophores. Anal Chem 88(18):9199–9206. https://doi.org/10.1021/acs.analchem.6b02420

    Article  CAS  Google Scholar 

  5. Tisserant J-N, Brönnimann R, Hany R, Jenatsch S, Nüesch FA, Mezzenga R, Bona G-L, Heier J (2014) Resonance light scattering in dye-aggregates forming in dewetting droplets. ACS Nano 8(10):10057–10065. https://doi.org/10.1021/nn5040839

    Article  CAS  Google Scholar 

  6. Watanabe N, Li X, Shibayama M (2017) Probe diffusion during sol–gel transition of a radical polymerization system using isorefractive dynamic light scattering. Macromolecules 50(24):9726–9733. https://doi.org/10.1021/acs.macromol.7b02202

    Article  CAS  Google Scholar 

  7. Xu JX, Siriwardana K, Zhou Y, Zou S, Zhang D (2018) Quantification of gold nanoparticle ultraviolet–visible extinction, absorption, and scattering cross-section spectra and scattering depolarization spectra: the effects of nanoparticle geometry, solvent composition, ligand functionalization, and nanoparticle aggregation. Anal Chem 90(1):785–793. https://doi.org/10.1021/acs.analchem.7b03227

    Article  CAS  Google Scholar 

  8. Yang L, Cui C, Wang L, Lei J, Zhang J (2016) Dual-shell fluorescent nanoparticles for self-monitoring of pH-responsive molecule-releasing in a visualized way. ACS Appl Mater Interfaces 8(29):19084–19091. https://doi.org/10.1021/acsami.6b05872

    Article  CAS  Google Scholar 

  9. Pasternack RF, Bustamante C, Collings PJ, Giannetto A, Gibbs EJ (1993) Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 115(13):5393–5399. https://doi.org/10.1021/ja00066a006

    Article  CAS  Google Scholar 

  10. Pasternack RF, Collings PJ (1995) Resonance light scattering: a new technique for studying chromophore aggregation. Science 269(5226):935–939. https://doi.org/10.1126/science.7638615

    Article  CAS  Google Scholar 

  11. Fazl F, Ahmadi M, Madrakian T, Afkhami A (2016) Effect of morphine, oxycodone and thebaine on resonance light scattering properties of human serum albumin: investigation possibility of morphine determination in the presence of the two other drugs. Sens Actuators B Chem 223:379–383. https://doi.org/10.1016/j.snb.2015.09.118

    Article  CAS  Google Scholar 

  12. Gheitaran R, Afkhami A, Madrakian T (2022) PVP-coated silver nanocubes as RRS probe for sensitive determination of Haloperidol in real samples. Spectrochim Acta A 272:121025. https://doi.org/10.1016/j.saa.2022.121025

    Article  CAS  Google Scholar 

  13. Maleki S, Madrakian T, Afkhami A (2018) Application of polyacrylonitrile nanofibers decorated with magnetic carbon dots as a resonance light scattering sensor to determine famotidine. Talanta 181:286–295. https://doi.org/10.1016/j.talanta.2018.01.021

    Article  CAS  Google Scholar 

  14. Pirdadeh-Beiranvand M, Afkhami A, Madrakian T (2018) Ag nanoparticles for determination of bisphenol A by resonance light-scattering technique. J Iran Chem Soc 15(7):1527–1534. https://doi.org/10.1007/s13738-018-1350-y

    Article  CAS  Google Scholar 

  15. Pirdadeh-Beiranvand M, Afkhami A, Madrakian T (2020) Ni0.5Zn0.5Fe2O4 nanoparticles-decorated poly (vinyl alcohol) nanofiber as resonance light scattering probe for determination of sunitinib in serum samples. Talanta 218:121190. https://doi.org/10.1016/j.talanta.2020.121190

    Article  CAS  Google Scholar 

  16. Gao ZF, Song WW, Luo HQ, Li NB (2015) Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance Rayleigh scattering method. Biosens Bioelectron 65:360–365. https://doi.org/10.1016/j.bios.2014.10.061

    Article  CAS  Google Scholar 

  17. Li J, Wang S, Kang W, Li N, Guo F, Chang H, Wei W (2021) Multifunctional gold nanoparticle based selective detection of esophageal squamous cell carcinoma cells using resonance Rayleigh scattering assay. Microchem J 163:105905. https://doi.org/10.1016/j.microc.2020.105905

    Article  CAS  Google Scholar 

  18. Liu S, Luo H, Li N, Liu Z, Zheng W (2001) Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes. Anal Chem 73(16):3907–3914. https://doi.org/10.1021/ac001454h

    Article  CAS  Google Scholar 

  19. Pourreza N, Ghomi M (2019) Hydrogel based aptasensor for thrombin sensing by resonance Rayleigh scattering. Anal Chim Acta 1079:180–191. https://doi.org/10.1016/j.aca.2019.06.049

    Article  CAS  Google Scholar 

  20. Wang H, Zhang Z, Chen C, Liang A, Jiang Z (2021) Fullerene carbon dot catalytic amplification-aptamer assay platform for ultratrace As+3 utilizing SERS/RRS/Abs trifunctional Au nanoprobes. J Hazard Mater 403:123633. https://doi.org/10.1016/j.jhazmat.2020.123633

    Article  CAS  Google Scholar 

  21. Wen G, Xiao Y, Chen S, Zhang X, Jiang Z (2021) A nanosol SERS/RRS aptamer assay of trace cobalt (II) by covalent organic framework BtPD-loaded nanogold catalytic amplification. Nanoscale Adv. https://doi.org/10.1039/D1NA00208B

    Article  Google Scholar 

  22. El-Kurdi R, Patra D (2019) Gold and silver nanoparticles in resonance Rayleigh scattering techniques for chemical sensing and biosensing: a review. Microchim Acta 186(10):1–18. https://doi.org/10.1007/s00604-019-3755-4

    Article  CAS  Google Scholar 

  23. Chen S, Yu Y-L, Wang J-H (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026

    Article  CAS  Google Scholar 

  24. Kubista M, Sjöback R, Eriksson S, Albinsson B (1994) Experimental correction for the inner-filter effect in fluorescence spectra. Analyst 119(3):417–419. https://doi.org/10.1039/AN9941900417

    Article  CAS  Google Scholar 

  25. Panigrahi SK, Mishra AK (2019) Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. J Photochem Photobiol C 41:100318. https://doi.org/10.1016/j.jphotochemrev.2019.100318

    Article  CAS  Google Scholar 

  26. Ryder AG, Stedmon CA, Harrit N, Bro R (2017) Calibration, standardization, and quantitative analysis of multidimensional fluorescence (MDF) measurements on complex mixtures (IUPAC Technical Report). Pure Appl Chem 89(12):1849–1870. https://doi.org/10.1515/pac-2017-0610

    Article  CAS  Google Scholar 

  27. Zhang J, Lu X, Lei Y, Hou X, Wu P (2017) Exploring the tunable excitation of QDs to maximize the overlap with the absorber for inner filter effect-based phosphorescence sensing of alkaline phosphatase. Nanoscale 9(40):15606–15611. https://doi.org/10.1039/C7NR03673F

    Article  CAS  Google Scholar 

  28. Zhang J, Zhou R, Tang D, Hou X, Wu P (2019) Optically-active nanocrystals for inner filter effect-based fluorescence sensing: achieving better spectral overlap. TrAC, Trends Anal Chem 110:183–190. https://doi.org/10.1016/j.trac.2018.11.002

    Article  CAS  Google Scholar 

  29. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111(6):3669–3712. https://doi.org/10.1021/cr100275d

    Article  CAS  Google Scholar 

  30. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192. https://doi.org/10.1146/annurev.physchem.040808.090434

    Article  CAS  Google Scholar 

  31. Wiley BJ, Im SH, Li Z-Y, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110(32):15666–15675. https://doi.org/10.1021/jp0608628

    Article  CAS  Google Scholar 

  32. Zhang Q, Li W, Wen L-P, Chen J, Xia Y (2010) Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chem Eur J 16(33):10234. https://doi.org/10.1002/chem.201000341

    Article  CAS  Google Scholar 

  33. Leese RA, Wehry E (1978) Corrections for inner-filter effects in fluorescence quenching measurements via right-angle and front-surface illumination. Anal Chem 50(8):1193–1197. https://doi.org/10.1021/ac50030a047

    Article  CAS  Google Scholar 

  34. Yuan P, Walt DR (1987) Calculation for fluorescence modulation by absorbing species and its application to measurements using optical fibers. Anal Chem 59(19):2391–2394. https://doi.org/10.1021/ac00146a015

    Article  CAS  Google Scholar 

  35. Kavitha J, Saidevaraj AB, Lakshmi KS (2016) Uv spectrophotometric estimation of sunitinib malate in pharmaceutical dosage form. Int J Pharm Pharm Sci 8(2):99–103

  36. Pradhan N, Rajkhowa H, Giri H, Shrestha B (2015) Simultaneous spectrophotometric estimation of moxifloxacin hydrochloride and doxorubicin hydrochloride. Int J Pharm Pharm Sci 7(11):21–26

    CAS  Google Scholar 

  37. Ivanov V, Adamova E, Figurovskaya V (2010) Acid-base, spectrophotometric, and colorimetric properties of 1, 2-dihydroxyantraquinonone-3-sulfoacid (Alizarin Red S). J Anal Chem 65(5):473–481. https://doi.org/10.1134/S1061934810050072

    Article  CAS  Google Scholar 

  38. Supian SM, Ling TL, Heng LY, Chong KF (2013) Quantitative determination of Al (III) ion by using Alizarin Red S including its microspheres optical sensing material. Anal Methods 5(10):2602–2609. https://doi.org/10.1039/C3AY40238J

    Article  CAS  Google Scholar 

  39. Wang Y, Hou LJ, Wu Y-B, Shi LL, Shang Z, Jin WJ (2014) Alizarin Complexone as a highly selective ratiometric fluorescent probe for Al3+ detection in semi-aqueous solution. J Photochem Photobiol A 281:40–46. https://doi.org/10.1016/j.jphotochem.2014.02.010

    Article  CAS  Google Scholar 

  40. Wang Y, Xiong L, Geng F, Zhang F, Xu M (2011) Design of a dual-signaling sensing system for fluorescent ratiometric detection of Al3+ ion based on the inner-filter effect. Analyst 136(22):4809–4814. https://doi.org/10.1039/C1AN15566K

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by grants from the Bu-Ali Sina University Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Afkhami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.91 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheitaran, R., Afkhami, A. & Madrakian, T. Utilizing inner filter effect in resonance Rayleigh scattering technique: a case study with silver nanocubes as RRS probe and several analytes as absorbers. Microchim Acta 190, 37 (2023). https://doi.org/10.1007/s00604-022-05609-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05609-7

Keywords

Navigation