Skip to main content
Log in

Glucometer-based electrochemical biosensor for determination of microRNA (let-7a) using magnetic-assisted extraction and supersandwich signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive and portable biosensor is proposed for simple detection of microRNAs based on a supersandwich hybridization signal amplification strategy and a glucometer transducer. The presence of a target microRNA triggers the cascading hybridization chain reaction to create long supersandwich assemblies containing multiple biotin-labelled DNA probes. Then, large amounts of biotin-modified invertase signal molecules can attach to the supersandwich assemblies to generate an amplified signal for the glucometer readout. With such supersandwich format, a single target microRNA can introduce many biotin-invertase signal molecules, resulting in a one-to-multiple amplification effect. Thus, the accurate quantification of microRNAs can be achieved in a simple detection fashion without the requirement of expensive or precise instrumentation. The linear range of the biosensor for microRNA was from 0.05 to 100 nM with a detection limit of 48 pM. The proposed biosensor can discriminate the target microRNA from its family members with high selectivity and can be successfully applied to the detection of target microRNA spiked in serum samples with a good recovery (96.0–108.0%). Therefore, the proposed biosensor is expected to provide more information for early and accurate cancer diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiang Z, Jiao J, Li J, Zhang H, Zheng J (2021) Novel electrochemical biosensing platform for microRNA: bivalent recognition-induced nanoparticle amplification occurred in nanochannels. Sens Actuators B 344:130209. https://doi.org/10.1016/j.snb.2021.130209

    Article  CAS  Google Scholar 

  2. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866. https://doi.org/10.1038/nrc1997

    Article  CAS  Google Scholar 

  3. He X, Zeng T, Li Z, Wang G, Ma N (2016) Catalytic molecular imaging of microRNA in living cells by DNA-programmed nanoparticle disassembly. Angew Chem 55:3073–3076. https://doi.org/10.1002/anie.201509726

    Article  CAS  Google Scholar 

  4. Li B, Liu Y, Liu Y, Tian T, Yang B, Huang X, Liu J, Liu B (2020) Construction of dual-color probes with target-triggered signal amplification for in situ single-molecule imaging of microRNA. ACS Nano 14:8116–8125. https://doi.org/10.1021/acsnano.0c01061

    Article  CAS  Google Scholar 

  5. Xu F, Qiao Z, Luo L, He X, Lei Y, Tang J, Shi H, Wang K (2022) A label-free cyclic amplification strategy for microRNA detection by coupling graphene oxide-controlled adsorption with superlong poly(thymine)-hosted fluorescent copper nanoparticles. Talanta 243:123323. https://doi.org/10.1016/j.talanta.2022.123323

    Article  CAS  Google Scholar 

  6. Liang J, Xu Q, Gu S (2022) LncRNA RSU1P2-microRNA let-7a-testis-expressed protein 10 axis modulates tumorigenesis and cancer stem cell-like properties in liver cancer. Bioengineered 13(2):4285–4300. https://doi.org/10.1080/21655979.2022.2031394

    Article  CAS  Google Scholar 

  7. Shi K, Dou B, Yang C, Chai Y, Yuan R, Xiang Y (2015) DNA-fueled molecular machine enables enzyme-free target recycling amplification for electronic detection of microRNA from cancer cells with highly minimized background noise. Anal Chem 87(16):8578–8583. https://doi.org/10.1021/acs.analchem.5b02418

    Article  CAS  Google Scholar 

  8. Li M, Cheng J, Yuan Z, Shen Q, Fan Q (2021) DNAzyme-catalyzed etching process of Au/Ag nanocages visualized via dark-field imaging with time elapse for ultrasensitive detection of microRNA. Sens. Actuators B 330:129347. https://doi.org/10.1016/j.snb.2020.129347

    Article  CAS  Google Scholar 

  9. Peng H, Newbigging AM, Reid MS, Uppal JS, Xu J, Zhang H, Le XC (2020) Signal amplification in living cells: a review of microRNA detection and imaging. Anal Chem 92:292–308. https://doi.org/10.1021/acs.analchem.9b04752

    Article  CAS  Google Scholar 

  10. Tang Y, He X, Zhou Z, Tang J, Guo R, Feng X (2016) Highly sensitive and selective miRNA detection based on a closed ring probe and multiple signal amplification. Chem Commun 52:13905–13908. https://doi.org/10.1039/c6cc07719f

    Article  CAS  Google Scholar 

  11. Wu H, Wang H, Liu Y, Wu J, Zou P (2019) Fluorometric determination of microRNA by using target-triggered cascade signal amplification and DNA-templated silver nanoclusters. Mikrochim Acta 186:669. https://doi.org/10.1007/s00604-019-3789-7

    Article  CAS  Google Scholar 

  12. Luo X, Zhu J, Jia W, Fang N, Wu P, Cai C, Zhu JJ (2021) Boosting long-range surface-enhanced raman scattering on plasmonic nanohole arrays for ultrasensitive detection of MiRNA. ACS Appl Mater Interfaces 13:18301–18313. https://doi.org/10.1021/acsami.1c01834

    Article  CAS  Google Scholar 

  13. Li H, Li Y, Li W, Cui L, Huang G, Huang J (2020) A carbon nanoparticle and DNase I-assisted amplified fluorescent biosensor for miRNA analysis. Talanta 213:120816. https://doi.org/10.1016/j.talanta.2020.120816

    Article  CAS  Google Scholar 

  14. Zou L, Wu Z, Liu X, Zheng Y, Mei W, Wang Q, Yang X, Wang K (2020) DNA hydrogelation-enhanced imaging ellipsometry for sensing exosomal microRNAs with a tunable detection range. Anal Chem 92:11953–11959. https://doi.org/10.1021/acs.analchem.0c02345

    Article  CAS  Google Scholar 

  15. Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301. https://doi.org/10.1016/j.ymeth.2010.01.032

    Article  CAS  Google Scholar 

  16. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858. https://doi.org/10.1126/science.1064921

    Article  CAS  Google Scholar 

  17. Roy S, Soh JH, Ying JY (2016) A microarray platform for detecting disease-specific circulating miRNA in human serum. Biosens Bioelectron 75:238–246. https://doi.org/10.1016/j.bios.2015.08.039

    Article  CAS  Google Scholar 

  18. Xu M, Ye J, Yang D, Abdullah Al-Maskri AA, Hu H, Jung C, Cai S, Zeng S (2019) Ultrasensitive detection of miRNA via one-step rolling circle-quantitative PCR (RC-qPCR). Anal Chim Acta 1077:208–215. https://doi.org/10.1016/j.aca.2019.05.028

    Article  CAS  Google Scholar 

  19. Xian Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3:697–703. https://doi.org/10.1038/nchem.1092

    Article  CAS  Google Scholar 

  20. Xiang Y, Lu Y (2012) Using commercially available personal glucose meters for portable quantification of DNA. Anal Chem 84(4):1975–1980. https://doi.org/10.1021/ac203014s

    Article  CAS  Google Scholar 

  21. Xiang Y, Lu Y (2012) Portable and quantitative detection of protein biomarkers and small molecular toxins using antibodies and ubiquitous personal glucose meters. Anal Chem 84(9):4174–4178. https://doi.org/10.1021/ac300517n

    Article  CAS  Google Scholar 

  22. Li R, Liu Q, Jin Y, Li B (2020) Sensitive colorimetric determination of microRNA let-7a through rolling circle amplification and a peroxidase-mimicking system composed of trimeric G-triplex and hemin DNAzyme. Mikrochim Acta 187:139. https://doi.org/10.1007/s00604-019-4093-2

    Article  CAS  Google Scholar 

  23. Qu X, Jin H, Liu Y, Sun Q (2018) Strand displacement amplification reaction on quantum dot-encoded silica bead for visual detection of multiplex microRNAs. Anal Chem 90:3482–3489. https://doi.org/10.1021/acs.analchem.7b05235

    Article  CAS  Google Scholar 

  24. Zhou F, Li B, Ma J (2015) A linear DNA probe as an alternative to a molecular beacon for improving the sensitivity of a homogenous fluorescence biosensing platform for DNA detection using target-primed rolling circle amplification. RSC Adv 5:4019–4025. https://doi.org/10.1039/c4ra14467h

    Article  CAS  Google Scholar 

  25. Zhou F, Meng R, Liu Q, Jin Y, Li B (2016) Photoinduced electron transfer-based fluorescence quenching combined with rolling circle amplification for sensitive detection of microRNA. ChemistrySelect 1:6422–6428. https://doi.org/10.1002/slct.201601485

    Article  CAS  Google Scholar 

  26. Borghei Y-S, Hosseini M, Ganjali MR (2017) Fluorometric determination of microRNA via FRET between silver nanoclusters and CdTe quantum dots. Mikrochim Acta 184:4713–4721. https://doi.org/10.1007/s00604-017-2512-9

    Article  CAS  Google Scholar 

  27. Xia F, White RJ, Zuo X, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346–14348. https://doi.org/10.1021/ja104998m

    Article  CAS  Google Scholar 

  28. Feng Q, Wang M, Qin L, Wang P (2019) Dual-signal readout of DNA methylation status based on the assembly of a supersandwich electrochemical biosensor without enzymatic reaction. ACS Sens 4:2615–2622. https://doi.org/10.1021/acssensors.9b00720

    Article  CAS  Google Scholar 

  29. Liu H, Xu S, He Z, Deng A, Zhu J (2013) Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal Chem 85(6):3385–3392. https://doi.org/10.1021/ac303789x

    Article  CAS  Google Scholar 

  30. Li J, Jiang J, Su Y, Liang Y, Zhang C (2021) A novel cloth-based supersandwich electrochemical aptasensor for direct, sensitive detection of pathogens. Anal Chim Acta 1188:339176. https://doi.org/10.1016/j.aca.2021.339176

    Article  CAS  Google Scholar 

  31. Yang J, Huang X, Gan C, Yuan R, Xiang Y (2019) Highly specific and sensitive point-of-care detection of rare circulating tumor cells in whole blood via a dual recognition strategy. Biosens Bioelectron 143:111604. https://doi.org/10.1016/j.bios.2019.111604

    Article  CAS  Google Scholar 

  32. Zhang J, Tang Y, Teng L, Lu M, Tang D (2015) Low-cost and highly efficient DNA biosensor for heavy metal ion using specific DNAzyme-modified microplate and portable glucometer-based detection mode. Biosens Bioelectron 68:232–238. https://doi.org/10.1016/j.bios.2015.01.001

    Article  CAS  Google Scholar 

  33. Gao Y, Yu H, Tian J, Xiao B (2021) Nonenzymatic DNA-based fluorescence biosensor combining carbon dots and graphene oxide with target-induced DNA strand displacement for microRNA detection. Nanomaterials (Basel) 11(10):2608. https://doi.org/10.3390/nano11102608

    Article  CAS  Google Scholar 

  34. Ma Q, Li S (2021) Enzyme- and label-free fluorescence microRNA biosensor based on the distance-dependent photoinduced electron transfer of DNA/Cu nanoparticles. Microchem J 160:105646. https://doi.org/10.1016/j.microc.2020.105646

    Article  CAS  Google Scholar 

  35. Chen X, Wang J, Shen H, Su X, Cao Y, Li T, Gan N (2019) Microfluidic chip for multiplex detection of trace chemical contaminants based on magnetic encoded aptamer probes and multibranched DNA nanostructures as signal tags. ACS Sens 4(8):2131–2139. https://doi.org/10.1021/acssensors.9b00963

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21961046, No. 21362046, and No. 21062030), Yunnan Fundamental Research Projects (grant NO. 202201AU070056), Scientific Research Foundation Project of Yunnan Provincial Department of Education (No. 2021J0436), and PhD Scientific Research Foundation of Yunnan Normal University (No. 2020ZB009), College students’ Innovative Entrepreneurial Training plan program of Yunnan Province (No. S202110681054), Graduate Students’ Scientific Research Innovation Foundation of Yunnan Normal University (No. YJSJJ22-B64).

Author information

Authors and Affiliations

Authors

Contributions

LW: conceptualization, investigation, formal analysis, writing—original draft preparation.

TS: investigation, formal analysis.

LP: investigation, formal analysis.

JZ: software, validation.

RH: investigation, formal analysis, visualization.

YY: conceptualization, supervision.

JY: writing—reviewing and editing, supervision, funding acquisition.

YZ: writing—reviewing and editing, supervision, funding acquisition.

Corresponding authors

Correspondence to Jianmei Yang or Yan Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 186 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Shan, T., Pu, L. et al. Glucometer-based electrochemical biosensor for determination of microRNA (let-7a) using magnetic-assisted extraction and supersandwich signal amplification. Microchim Acta 189, 444 (2022). https://doi.org/10.1007/s00604-022-05544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05544-7

Keywords

Navigation