Skip to main content

Advertisement

Log in

Graphitic carbon nitride nanosheets as promising candidates for the detection of hazardous contaminants of environmental and biological concern in aqueous matrices

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Monitoring of pollutant and toxic substances is essential for cleaner environment and healthy life. Sensing of various environmental contaminants and biomolecules such as heavy metals, pharmaceutics, toxic gases, volatile organic compounds, food toxins, and pathogens is of high importance to guaranty the good health and sustainable environment to community. In recent years, graphitic carbon nitride (g-CN) has drawn a significant amount of interest as a sensor due to its large surface area and unique electrochemical properties, low bandgap energy, high thermal and chemical stability, facile synthesis, nontoxicity, and electron rich property. Furthermore, the binary and ternary nanocomposites of graphitic carbon nitride further enhance their performance as a sensor making it a cost effective, fast, and reliable gadget for the purpose, and opens a wide area of research. Numerous reviews addressing a variety of applications including photocatalytic energy conversion, photoelectrochemical detection, and hydrogen evolution of graphitic carbon nitride have been documented to date. But a lesser attention has been devoted to the mechanistic approaches towards sensing of variety of pollutants concerned with environmental and biological aspects. Herein, we present the sensing features of graphitic carbon nitride towards the detection of various analytes including toxic heavy metals, pharmaceuticals, phenolic compounds, nitroaromatic compounds, volatile organic molecules, toxic gases, and foodborne pathogens. This review will undoubtedly provide future insights for researchers working in the field of sensors, allowing them to investigate the intriguing graphitic carbon nitride material as a sensing platform that is comparable to several other nanomaterials documented in the literature. Therefore, we hope that this study could reveal some intriguing sensing properties of graphitic carbon nitride, which may help researchers better understand how it interacts with contaminants of environmental and biological concern.

Graphical abstract

Graphitic carbon nitride Nanosheets as Promising Analytical Tool for Environmental and Biological Monitoring of Hazardous Substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

g-C3N4 :

Graphitic carbon nitride

QDs:

Quantum dots

GSH:

Glutathione

ECL:

Electrochemiluminescence

PL:

Photoluminescence

GQDs:

Graphene quantum dots

IFE:

Inner filter effect

GCE:

Glassy carbon electrode

MB :

Methylene blue

CB:

Conduction band

ITO:

Indium tin oxide

LOD:

Limit of detection

NPs:

Nanoparticles

SWASV:

Square wave anodic stripping voltammetry

GO:

Graphene oxide

SERS:

Surface enhanced Raman spectroscopy

PtNPs:

Platinum nanoparticles

THIL:

Thiol based ionic liquids

NaBH4 :

Sodium borohydride

NCs:

Nanoclusters

ZIF-8:

Zeolitic imidazolate framework-8

PET:

Photoinduced electron transfer

PEC:

Photoelectrochemical

3DBC:

3D branched crystalline

FTO:

Fluorine-doped tin oxide

DRS:

Differential reflectance spectroscopy

CIP:

Ciprofloxacin

EPI:

Epinephrine

MFA:

Mefenamic acid

PAR:

Paracetamol

BCN:

Boron-doped graphitic carbon nitride

DPV:

Differential pulse voltammetry

LSASV:

Linear sweep anodic stripping voltammetry

EIS :

Electrochemical impedance spectroscopy

BP:

Black phosphorous

CTL:

Cataluminescence

CV:

Cyclic voltammetry

CA:

Chronoamperometry

DFT:

Density functional theory

DPA:

Diphenylamine

MIP:

Molecular imprinted polymer

AFM:

Atomic force microscope

XRD:

X-ray diffraction

SEM:

Scanning electron microscope

TEM:

Transmission electron microscopy

FTIR:

Fourier transform infrared spectroscopy

SMZ:

Sulfamethazine

PEI:

Poly (ethyleneimine)

SWV:

Square wave voltammetry

RH:

Relative humidity

AuE:

Gold electrode

PBA:

Phenylboronic acid

TBRC:

Tris(2,2′-biphenyl)ruthenium(II) chloride

XPS:

X-ray photoelectron spectroscopy

FRET:

Fluorescence resonance energy transfer

CL:

Chemiluminescence

HP:

Hairpin probe

EDS:

Energy dispersive spectroscopy

PDA:

Polydopamine

LGS:

Langasite

SAW:

Surface acoustic wave

Au NWs:

gold nanowires

SERS:

Surface-enhanced Raman scattering

AFP:

2-Amino fluorine polymer

References

  1. Teixeira RA, Lima EC, Benetti AD, Thue PS, Cunha MR, Cimirro NF, Sher F, Dehghani MH, dos Reis GS, Dotto GL (2021) Preparation of hybrids of wood sawdust with 3-aminopropyl-triethoxysilane. Application as an adsorbent to remove Reactive Blue 4 dye from wastewater effluents J Taiwan Inst Chem Eng 125 141–152

  2. Rasheed T, Khan S, Ahmad T, Ullah N (2022) Covalent organic frameworks-based membranes as promising modalities from preparation to separation applications: an overview. Chem Rec 22:e202200062

    Article  CAS  PubMed  Google Scholar 

  3. Masood Z, Rehman HU, Baloch A, Akbar N, Zakir M, Gul I, Gul N, Jamil N, Din N, Ambreen B (2015) Analysis of physicochemical parameters of water and sediments collected from rawal dam Islamabad, American-Eurasian. J Toxicol Sci 7:123–128

    Google Scholar 

  4. Sadiq H, Sher F, Sehar S, Lima EC, Zhang S, Iqbal HM, Zafar F, Nuhanović M (2021) Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J Mol Liq 335:116567

    Article  CAS  Google Scholar 

  5. Bagheri AR, Aramesh N, Sher F, Bilal M (2021) Covalent organic frameworks as robust materials for mitigation of environmental pollutants. Chemosphere 270:129523

    Article  CAS  PubMed  Google Scholar 

  6. Ahmad T, Manzar MS, Khan SU, Kazi IW, Mu’azu ND, Ullah N (2022) Synthesis and adsorptive performance of a novel triazine core-containing resin for the ultrahigh removal of malachite green from water. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-07015-w

  7. Waheed A, Kazi IW, Manzar MS, Ahmad T, Mansha M, Ullah N, Blaisi NIA (2020) ultrahigh and efficient removal of methyl orange, eriochrom black T and acid blue 92 by triazine based cross-linked polyamine resin: synthesis, isotherm and kinetic studies. Colloids Surf A 607:125472

    Article  CAS  Google Scholar 

  8. Manzar MS, Ahmad T, Ullah N, Chellam PV, John J, Zubair M, Brandão RJ, Meili L, Alagha O, Çevik E (2022) Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: kinetic and process modeling. Sep Purif Technol 287:120559

    Article  Google Scholar 

  9. Mansha M, Waheed A, Ahmad T, Kazi IW, Ullah N (2020) Synthesis of a novel polysuccinimide based resin for the ultrahigh removal of anionic azo dyes from aqueous solution. Environ Res 184:109337

    Article  CAS  PubMed  Google Scholar 

  10. El Messaoudi N, El Khomri M, Ablouh E, Bouich A, Lacherai A, Jada A, Sher F, Lima E (2021) Superior removal of tetracycline antibiotic using SiO2 nanoparticles biosynthesized from the extract of Nerium oleander leaves. Chemosphere 287:132453. https://doi.org/10.1016/j.chemosphere.2021.132453

  11. Ahmad T, Mansha M, Kazi IW, Waheed A, Ullah N (2021) Synthesis of 3, 5-diaminobenzoic acid containing crosslinked porous polyamine resin as a new adsorbent for efficient removal of cationic and anionic dyes from aqueous solutions. J Water Process Eng 43:102304

    Article  Google Scholar 

  12. Waheed A, Ahmad T, Haroon M, Ullah N (2020) A Highly sensitive and selective fluorescent sensor for zinc (II) ions based on a 1, 2, 3-triazolyl-functionalized 2, 2’-dipicolylamine (DPA). ChemistrySelect 5:5300–5305

    Article  CAS  Google Scholar 

  13. Usman M, Zeb Z, Ullah H, Suliman MH, Humayun M, Ullah L, Shah SNA, Ahmed U, Saeed M (2022) A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification. J Environ Chem Eng 10:107548. https://doi.org/10.1016/j.jece.2022.107548

  14. Rasheed T (2022) MXenes as emerging two-dimensional analytical modalities for potential recognition of hazardous environmental contaminants. Mater Today Chem 24:100859

    Article  CAS  Google Scholar 

  15. Rasheed T, Hassan AA, Kausar F, Sher F, Bilal M, Iqbal HM (2020) Carbon nanotubes assisted analytical detection–sensing/delivery cues for environmental and biomedical monitoring. TrAC Trends Anal Chem 132:116066

    Article  CAS  Google Scholar 

  16. Rasheed T, Nabeel F, Rizwan K, Bilal M, Hussain T, Shehzad SA (2020) Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: a review. TrAC Trends Anal Chem 129:115958

    Article  CAS  Google Scholar 

  17. Rasheed T, Rizwan K (2022) Metal-organic frameworks based hybrid nanocomposites as state-of–the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 199:113867

    Article  CAS  PubMed  Google Scholar 

  18. Rasheed T, Shafi S, Ali J, Sher F, Rizwan K, Khan S (2022) Recent advances in chemically and biologically synthesized nanostructures for colorimetric detection of heavy metal. J King Saud Univ Sci 34:101745

    Article  Google Scholar 

  19. Idris AO, Oseghe EO, Msagati TA, Kuvarega AT, Feleni U, Mamba B (2020) Graphitic carbon nitride: a highly electroactive nanomaterial for environmental and clinical sensing. Sensors 20:5743

    Article  CAS  PubMed Central  Google Scholar 

  20. Wu W, Ruan Z, Li J, Li Y, Jiang Y, Xu X, Li D, Yuan Y, Lin K (2019) In situ preparation and analysis of bimetal Co-doped mesoporous graphitic carbon nitride with enhanced photocatalytic activity. Nanomicro Lett 11:10

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Samsudin MFR, Bacho N, Sufian S (2018) Recent development of graphitic carbon nitride-based photocatalyst for environmental pollution remediation. In: Nanocatalysts, IntechOpen

  22. Mansha M, Ahmad T, Ullah N, Akram Khan S, Ashraf M, Ali S, Tan B, Khan I (2022) Photocatalytic water‐splitting by organic conjugated polymers: opportunities and challenges. Chem Rec e202100336. https://doi.org/10.1002/tcr.202100336

  23. Zhou Z, Zhang Y, Shen Y, Liu S, Zhang Y (2018) Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem Soc Rev 47:2298–2321

    Article  CAS  PubMed  Google Scholar 

  24. Srinivasan P, Samanta S, Krishnakumar A, Rayappan JBB, Kailasam K (2021) Insights into g-C3N4 as chemi-resistive gas sensors towards VOCs and humidity-a review on state-of-the-art and recent advancements. J Mater Chem A 9:10612–10651. https://doi.org/10.1039/D0TA12500H

  25. Hatamie A, Marahel F, Sharifat A (2018) Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence. Talanta 176:518–525

    Article  CAS  PubMed  Google Scholar 

  26. Zhu J, Xiao P, Li H, Carabineiro SAC (2014) ACS Appl. Mater Interfaces 6 16449

  27. Rauf M, Shah SS, Shah SK, Shah SNA, Haq TU, Shah J, Ullah A, Ahmad T, Khan Y, Aziz MA (2022) Facile hydrothermal synthesis of zinc sulfide nanowires for high-performance asymmetric supercapacitor. J Saudi Chem Soc 26:101514

    Article  CAS  Google Scholar 

  28. Shi T, Wen Z, Ding L, Liu Q, Guo Y, Ding C, Wang K (2019) Visible/near-infrared light response VOPc/carbon nitride nanocomposites: VOPc sensitizing carbon nitride to improve photo-to-current conversion efficiency for fabricating photoelectrochemical diclofenac aptasensor. Sens Actuators B Chem 299:126834

    Article  CAS  Google Scholar 

  29. Xu Y, Wen Z, Wang T, Zhang M, Ding C, Guo Y, Jiang D, Wang K (2020) Ternary Z-scheme heterojunction of Bi SPR-promoted BiVO4/g-C3N4 with effectively boosted photoelectrochemical activity for constructing oxytetracycline aptasensor. Biosens Bioelectron 166:112453

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Suvarna M, Li L, Pan L, Pérez-Ramírez J, Ok YS, Wang X (2022) A review of computational modeling techniques for wet waste valorization: research trends and future perspectives. J Clean Prod 133025

  31. Balasubramanian P, Settu R, Chen S-M, Chen T-W (2018) Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite. Microchim Acta 185:1–9

    Article  CAS  Google Scholar 

  32. Balasubramanian P, Balamurugan T, Chen S-M, Chen T-W, Ali MA, Al-Hemaid FM, Elshikh M (2018) An amperometric sensor for low level detection of antidepressant drug carbamazepine based on graphene oxide-g-C3N4 composite film modified electrode. J Electrochem Soc 165:B160

    Article  CAS  Google Scholar 

  33. Tan S (2021) Abundant monovalent ions as environmental signposts for pathogens during host colonization. Infect Immun 89:e00641-e620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tian H, Fan H, Ma J, Ma L, Dong G (2017) Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing. Electrochim Acta 247:787–794

    Article  CAS  Google Scholar 

  35. Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu J-P, Wee ATS, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663

    Article  CAS  Google Scholar 

  36. Lei W, Xu Y, Zhou T, Xia M, Hao Q (2018) Determination of trace uric acid in serum using porous graphitic carbon nitride (gC 3 N 4) as a fluorescent probe. Microchim Acta 185:1–9

    Google Scholar 

  37. Mazhabi RM, Ge L, Jiang H, Wang X (2018) A facile photoelectrochemical sensor for high sensitive ROS and AA detection based on graphitic carbon nitride nanosheets. Biosens Bioelectron 107:54–61

    Article  Google Scholar 

  38. Shrestha BK, Ahmad R, Shrestha S, Park CH, Kim CS (2017) In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application. Biosens Bioelectron 94:686–693

    Article  CAS  PubMed  Google Scholar 

  39. Zhou C, Chen Y, Shang P, Chi Y (2016) Strong electrochemiluminescent interactions between carbon nitride nanosheet–reduced graphene oxide nanohybrids and folic acid, and ultrasensitive sensing for folic acid. Analyst 141:3379–3388

    Article  CAS  PubMed  Google Scholar 

  40. Ji J, Wen J, Shen Y, Lv Y, Chen Y, Liu S, Ma H, Zhang Y (2017) Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing. J Am Chem Soc 139:11698–11701

    Article  CAS  PubMed  Google Scholar 

  41. Zhu X, Kou F, Xu H, Han Y, Yang G, Huang X, Chen W, Chi Y, Lin Z (2018) Label-free ochratoxin A electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet. Sens Actuators, B Chem 270:263–269

    Article  CAS  Google Scholar 

  42. Liu X, Zhang J, Di J, Long Y, Li W, Tu Y (2017) Graphene-like carbon nitride nanosheet as a novel sensing platform for electrochemical determination of tryptophan. J Colloid Interface Sci 505:964–972

    Article  CAS  PubMed  Google Scholar 

  43. Xu Y, Niu X, Zhang H, Xu L, Zhao S, Chen H, Chen X (2015) Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)–Hg2+ chemosensor. J Agric Food Chem 63:1747–1755

    Article  CAS  PubMed  Google Scholar 

  44. Liu L, Liu J-W, Duan L-Y, Luo F-Y, Wang Y-M, Yu R-Q, Jiang J-H (2018) Graphitic carbon nitride nanosheets-based turn-on fluorescent biosensor for highly sensitive, label-free detection of adenylate kinase activity. Sens Actuators, B Chem 267:231–236

    Article  CAS  Google Scholar 

  45. Wang H, Ma Q, Wang Y, Wang C, Qin D, Shan D, Chen J, Lu X (2017) Resonance energy transfer based electrochemiluminescence and fluorescence sensing of riboflavin using graphitic carbon nitride quantum dots. Anal Chim Acta 973:34–42

    Article  CAS  PubMed  Google Scholar 

  46. Gao J, Xiong H, Zhang W, Wang Y, Wang H, Wen W, Zhang X, Wang S (2018) Electrochemiluminescent aptasensor based on β-cyclodextrin/graphitic carbon nitride composite for highly selective and ultrasensitive assay of platelet derived growth factor BB. Carbon 130:416–423. https://doi.org/10.1016/j.carbon.2018.01.026

  47. Ma H, Zhao Y, Li L, Wang H, Wei Q (2018) Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on mesoporous graphite-like carbon nitride. Talanta 188:729–735

    Article  CAS  PubMed  Google Scholar 

  48. Tabrizi MA, Shamsipur M, Saber R, Sarkar S, Ebrahimi V (2017) A high sensitive visible light-driven photoelectrochemical aptasensor for shrimp allergen tropomyosin detection using graphitic carbon nitride-TiO2 nanocomposite. Biosens Bioelectron 98:113–118

    Article  Google Scholar 

  49. Hu L, Zheng J, Zhao K, Deng A, Li J (2018) An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac. Biosens Bioelectron 101:260–267

    Article  CAS  PubMed  Google Scholar 

  50. Dai G, Xie J, Li C, Liu S (2017) Flower-like Co3O4/graphitic carbon nitride nanocomposite based electrochemical sensor and its highly sensitive electrocatalysis of hydrazine. J Alloys Compd 727:43–51

    Article  CAS  Google Scholar 

  51. Ahmad R, Tripathy N, Khosla A, Khan M, Mishra P, Ansari WA, Syed MA, Hahn Y-B (2019) Recent advances in nanostructured graphitic carbon nitride as a sensing material for heavy metal ions. J Electrochem Soc 167:037519

    Article  Google Scholar 

  52. Magesa F, Wu Y, Tian Y, Vianney J-M, Buza J, He Q, Tan Y (2019) Graphene and graphene like 2D graphitic carbon nitride: electrochemical detection of food colorants and toxic substances in environment. Trends Environ Anal Chem 23:e00064

    Article  CAS  Google Scholar 

  53. Gupta N, Todi K, Narayan T, Malhotra B (2022) Graphitic carbon nitride-based nanoplatforms for biosensors: design strategies and applications. Materials Today Chemistry 24:100770

  54. Qu B, Sun J, Li P, Jing L (2021) Current advances on g-C3N4-based fluorescence detection for environmental contaminants. J Hazard Mater 127990

  55. Chen L, Huang D, Ren S, Dong T, Chi Y, Chen G (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 5:225–230

    Article  CAS  PubMed  Google Scholar 

  56. Xu C (n.d.) MnO@ void@ C with triple balances for superior microwave absorption performance. ACS Appl Mater Interfaces 32037

  57. Asif M, Aziz A, Wang Z, Ashraf G, Wang J, Luo H, Chen X, Xiao F, Liu H (2019) Hierarchical CNTs@ CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal Chem 91:3912–3920

    Article  CAS  PubMed  Google Scholar 

  58. Asif M, Aziz A, Wang H, Wang Z, Wang W, Ajmal M, Xiao F, Chen X, Liu H (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchim Acta 186:1–11

    Article  CAS  Google Scholar 

  59. Asif M, Aziz A, Ashraf G, Wang Z, Wang J, Azeem M, Chen X, Xiao F, Liu H (2018) Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. ACS Appl Mater Interfaces 10:36675–36685

    Article  CAS  PubMed  Google Scholar 

  60. Asif M, Ashraf G, Aziz A, Iftikhar T, Wang Z, Xiao F, Sun Y (2022) Tuning the redox chemistry of copper oxide nanoarchitectures integrated with rGOP via facet engineering: sensing H2S toward SRB detection. ACS Appl Mater Interfaces 14:19480–19490

    Article  CAS  PubMed  Google Scholar 

  61. Li J, Wang H, Guo Z, Wang Y, Ma H, Ren X, Du B, Wei Q (2017) A “turn-off” fluorescent biosensor for the detection of mercury (II) based on graphite carbon nitride. Talanta 162: 46–51

  62. Paul DR, Sharma R, Nehra S, Sharma A (2019) Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution. RSC Adv 9:15381–15391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nguyen Q-B, Vahabi H, Rios de Anda A, Versace D-L, Langlois V, Perrot C, Nguyen V-H, Naili S, Renard E (2021) Dual UV-thermal curing of biobased resorcinol epoxy resin-diatomite composites with improved acoustic performance and attractive flame retardancy behavior, Sustainable. Chemistry 2:24–48

    CAS  Google Scholar 

  64. Nie J, Xu T, Liu Q, Yang C, Sun X (2022) Multi-layered g-C3N4 as a fluorescent probe for Hg2+ detection. J Fluoresc 1–5

  65. Sonowal K, Saikia L (2023) Functional groups assisted-photoinduced electron transfer-mediated highly fluorescent metal-organic framework quantum dot composite for selective detection of mercury (II) in water. J Environ Sci 126:531–544

  66. Guo X, Yang J, Wei Y, Wang L, Pi J (2022) Graphitic carbon nitride quantum dots in dual-mode fluorescence switching platforms for trace analysis of Ag (I) and l-cysteine. ACS Appl Nano Mater 5:4230–4240

    Article  CAS  Google Scholar 

  67. Li X, Wu L, Yu Q, Li H (2022) Preparation of poly-dopamine coated graphite carbon nitride voltammetric sensor and its detection of Cu2+. Integr Ferroelectr 225:297–309

    Article  CAS  Google Scholar 

  68. Zhang M, Zhang Y, Gan M, Xie L, Wang J, Jia W, Bian W, Shuang S, Choi MM (2022) Facile synthesis of sulfur and oxygen co-doped graphitic carbon nitride quantum dots for on-off detection of Cu2+ in real samples and living cells. Methods Appl Fluoresc 10:035011

    Article  Google Scholar 

  69. Lu X, Qin H, Cai J, Cui Y, Liao L, Lv F, Zhu C, Wang L, Liu J, Long L (2022) Gram-scale synthesis of graphitic carbon nitride quantum dots with ultraviolet photoluminescence for Fe3+ ion detection. Nanomaterials 12:2804

  70. Nasresfahani S, Soltani S, Ashrafi H, Sheikhi M (2022) Introducing efficient and stable Palladium@ Titanium dioxide/carbon nitride nanosheet: accelerating surface reactions for the selective detection of ethanol in a wide concentration range. Ceram Int 48:9824–9834

    Article  CAS  Google Scholar 

  71. Pasupuleti KS, Nam D-J, Bak N-H, Reddeppa M, Oh J-E, Kim S-G, Cho HD, Kim M-D (2022) Highly sensitive gC 3 N 4 nanosheets as a potential candidate for the effective detection of NO 2 gas via langasite-based surface acoustic wave gas sensor. J Mater Chem C 10:160–170

    Article  CAS  Google Scholar 

  72. Xu L, Ma J, Chen D, Gu C, Zhou J, Jiang T (2022) Brush-like gold nanowires-anchored g-C3N4 nanosheets with tunable geometry for ultrasensitive and regenerative SERS detection of gaseous molecules. Spectrochim Acta A Mol Biomol Spectrosc 121732

  73. Ganesamurthi J, Shanmugam R, Chen S-M, Veerakumar P (2022) Bismuth sulfide/zinc-doped graphitic carbon nitride nanocomposite for electrochemical detection of hazardous nitric oxide. J Electroanal Chem 910:116174

    Article  CAS  Google Scholar 

  74. Hu J, Zhang Z-H, Zhu Z, Chen J, Hu X, Chen H (2021) Specific intracellular binding peptide as sPD-L1 antibody mimic: robust binding capacity and intracellular region specific modulation upon applied to sensing research. Biosens Bioelectron 185:113269

  75. Yang Y, Wang H, Wu Y, Yu X (2022) Dual recognition strategy for selective fluorescent detection of dopamine and antioxidants based on graphite carbon nitride in human blood serum. Spectrochim Acta Part A Mol Biomol Spectrosc 265:120385

    Article  CAS  Google Scholar 

  76. Mesgari F, Salehnia F, Beigi SM, Hosseini M, Ganjali MR (2022) Enzyme free electrochemiluminescence sensor of histamine based on graphite-carbon nitride nanosheets. Electroanalysis 34:659–666

    Article  CAS  Google Scholar 

  77. Wang L, Shi Z, Wang X, Mu S, Xu X, Shen L, Li P (2021) Protective effects of bovine milk exosomes against oxidative stress in IEC-6 cells. Eur J Nutr 60:317–327

    Article  CAS  PubMed  Google Scholar 

  78. Rasheed T (2022) Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: perspective and challenges. Sci Total Environ 833:155279

  79. Rasheed T, Ahmad N, Ali J, Hassan AA, Sher F, Rizwan K, Iqbal HM, Bilal M (2021) Nano and micro architectured cues as smart materials to mitigate recalcitrant pharmaceutical pollutants from wastewater. Chemosphere 274:129785

    Article  CAS  PubMed  Google Scholar 

  80. Rasheed T, Bilal M, Hassan AA, Nabeel F, Bharagava RN, Ferreira LFR, Tran HN, Iqbal HM (2020) Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ Res 185:109436

    Article  CAS  PubMed  Google Scholar 

  81. Rasheed T, Hassan AA, Bilal M, Hussain T, Rizwan K (2020) Metal-organic frameworks based adsorbents: a review from removal perspective of various environmental contaminants from wastewater. Chemosphere 259:127369

    Article  CAS  PubMed  Google Scholar 

  82. Rasheed T, Kausar F, Rizwan K, Adeel M, Sher F, Alwadai N, Alshammari FH (2022) Two dimensional MXenes as emerging paradigm for adsorptive removal of toxic metallic pollutants from wastewater. Chemosphere 287:132319

    Article  CAS  PubMed  Google Scholar 

  83. Mansha M, Kazi IW, Manzar MS, Ahmed T, Waheed A, Ullah N, Blaisi NI (2020) Ultrahigh removal of methyl orange, acid blue-92 and malachite green by a novel triazine-based polyamine resin: synthesis, isotherm and kinetic studies. Int J Environ Anal Chem 1–19. https://doi.org/10.1080/03067319.2020.1858072

  84. Suzuki T, Hidaka T, Kumagai Y, Yamamoto M (2020) Environmental pollutants and the immune response. Nature Immunology 21:1486–1495

    Article  PubMed  Google Scholar 

  85. Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HM (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66

    Article  CAS  PubMed  Google Scholar 

  86. Rasheed T, Bilal M, Nabeel F, Iqbal HM, Li C, Zhou Y (2018) Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci Total Environ 615:476–485

    Article  CAS  PubMed  Google Scholar 

  87. Rasheed T, Li C, Bilal M, Yu C, Iqbal HM (2018) Potentially toxic elements and environmentally-related pollutants recognition using colorimetric and ratiometric fluorescent probes. Sci Total Environ 640:174–193

    Article  PubMed  Google Scholar 

  88. Rasheed T, Li C, Fu L, Nabeel F, Yu C, Gong L, Zhou Y (2018) Development and characterization of newly engineered chemosensor with intracellular monitoring potentialities and lowest detection of toxic elements. J Mol Liq 272:440–449

    Article  CAS  Google Scholar 

  89. Rasheed T, Li C, Nabeel F, Huang W, Zhou Y (2019) Self-assembly of alternating copolymer vesicles for the highly selective, sensitive and visual detection and quantification of aqueous Hg2+. Chem Eng J 358:101–109

    Article  CAS  Google Scholar 

  90. Rasheed T, Li C, Nabeel F, Qi M, Zhang Y, Yu C (2018) Real-time probing of mercury using an efficient “turn-on” strategy with potential as in-field mapping kit and in live cell imaging. New J Chem 42:10940–10946

    Article  CAS  Google Scholar 

  91. Rasheed T, Li C, Zhang Y, Nabeel F, Peng J, Qi J, Gong L, Yu C (2018) Rhodamine-based multianalyte colorimetric probe with potentialities as on-site assay kit and in biological systems. Sens Actuators, B Chem 258:115–124

    Article  CAS  Google Scholar 

  92. Eddaif L, Shaban A, Telegdi J (2019) Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review. Int J Environ Anal Chem 99:824–853

    Article  CAS  Google Scholar 

  93. Filatova EA, Gulevskaya AV, Pozharskii AF, Ermolenko EA, Ozeryanskii VA, Misharev AD (2020) Synthesis of 2‐aryl‐and 2, 7‐diaryl‐1, 8‐bis (dimethylamino) naphthalenes. Overview of the “buttressing effect” in 2, 7‐disubstituted proton sponges. ChemistrySelect 5 9932–9945

  94. Rasheed T, Nabeel F, Adeel M, Bilal M, Iqbal HM (2019) “Turn-on” fluorescent sensor-based probing of toxic Hg (II) and Cu (II) with potential intracellular monitoring. Biocatal Agric Biotechnol 17:696–701

    Article  Google Scholar 

  95. Rasheed T, Nabeel F, Li C, Bilal M (2019) Rhodamine-assisted fluorescent strategy for the sensitive and selective in-field mapping of environmental pollutant Hg (II) with potential bioimaging. J Lumin 208:519–526

    Article  CAS  Google Scholar 

  96. Rasheed T, Nabeel F, Shafi S (2019) Chromogenic vesicles for aqueous detection and quantification of Hg2+/Cu2+ in real water samples. J Mol Liq 282:489–498

    Article  CAS  Google Scholar 

  97. Shiravand G, Badiei A, Ziarani GM (2017) Carboxyl-rich g-C3N4 nanoparticles: synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens Actuators B Chem 242:244–252

    Article  CAS  Google Scholar 

  98. Duan J, Zhang Y, Yin Y, Li H, Wang J, Zhu L (2018) A novel “on-off-on” fluorescent sensor for 6-thioguanine and Hg2+ based on g-C3N4 nanosheets. Sens Actuators B Chem 257:504–510

    Article  CAS  Google Scholar 

  99. Patir K, Gogoi SK (2018) Facile synthesis of photoluminescent graphitic carbon nitride quantum dots for Hg2+ detection and room temperature phosphorescence. ACS Sustain Chem Eng 6:1732–1743

    Article  CAS  Google Scholar 

  100. Ganjali MR, Rahmani AR, Shokoohi R, Farmany A, Khazaei M (2019) A highly sensitive and selective electrochemical mercury (II) sensor based on nanoparticles of Hg (II)-imprinted polymer and graphitic carbon nitride (gC 3N4). Int J Electrochem Sci 14:6420–6430

    Article  CAS  Google Scholar 

  101. Amanulla B, Perumal KN, Ramaraj SK (2019) Chitosan functionalized gold nanoparticles assembled on sulphur doped graphitic carbon nitride as a new platform for colorimetric detection of trace Hg2+. Sens Actuators B Chem 281:281–287

    Article  CAS  Google Scholar 

  102. Chai Y, Li X, Yang M (2019) Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO 2 nanosheets as the electrochemical probe. Microchim Acta 186:1–6

    Article  CAS  Google Scholar 

  103. Chen X, Liu Y, Ke X-X, Weerasooriya R, Li H, Wang L-C, Wu Y-C (2021) A green method to synthesize AuNPs/mpg-C3N4 nanocomposites for constructing anti-interference electrochemical sensing interface toward methylmercury. J Alloy Compd 853:157365

    Article  CAS  Google Scholar 

  104. Santhoshkumar S, Murugan E (2021) Rationally designed SERS AgNPs/GO/g-CN nanohybrids to detect methylene blue and Hg2+ ions in aqueous solution. Appl Surf Sci 553:149544

    Article  CAS  Google Scholar 

  105. Tian J, Chen K, Wang H, Liu W, Wang X (2020) Determination of a thiol-based ionic liquid using ultrathin graphitic carbon nitride nanosheets as a nanofluoroprobe. Talanta 207:120291

    Article  CAS  PubMed  Google Scholar 

  106. Li M, Liao H, Deng Q, Wu Y, Xiao F, Wei X, Tu D (2018) Preparation of an intelligent hydrogel sensor based on g-C3N4 nanosheets for selective detection of Ag+. J Macromol Sci A 55:408–413

    Article  CAS  Google Scholar 

  107. Tang S, Wang M, Li G, Li X, Chen W, Zhang L (2018) Ultrasensitive colorimetric determination of silver (I) based on the peroxidase mimicking activity of a hybrid material composed of graphitic carbon nitride and platinum nanoparticles. Microchim Acta 185:1–7

    Article  Google Scholar 

  108. Lv H, Teng Z, Wang C, Wang G (2017) Ultra-high sensitive voltammetric sensor modified by largely oxygenous functionalized ultrathin carbon nitride nanosheets for detection of Cu (II). Sens Actuators B Chem 242:897–903

    Article  CAS  Google Scholar 

  109. Lv H, Teng Z, Wang S, Feng K, Wang X, Wang C, Wang G (2018) Voltammetric simultaneous ion flux measurements platform for Cu2+, Pb2+ and Hg2+ near rice root surface: utilizing carbon nitride heterojunction film modified carbon fiber microelectrode. Sens Actuators B Chem 256:98–106

    Article  CAS  Google Scholar 

  110. Song S, Wang C, Zhao Y, Hu T, Zhou X, Zhao T, Yang M, Lin Q (2018) Gold-Cluster-based dual-emission nanocomposite film as ratiometric fluorescent sensing paper for specific metal ion. Part Part Syst Charact 35:1700471

    Article  Google Scholar 

  111. Liu Y, Sun Y, Yang M (2021) A double-potential ratiometric electrochemiluminescence platform based on gC 3 N 4 nanosheets (gC 3 N 4 NSs) and graphene quantum dots for Cu 2+ detection. Anal Methods 13:903–909

    Article  CAS  PubMed  Google Scholar 

  112. Wang Q, Tang Y, Yang Y, Zhao J, Zhang Y, Li L, Wang Q, Ming J (2020) Interaction between wheat gliadin and quercetin under different pH conditions analyzed by multi-spectroscopy methods. Spectrochim Acta Part A Mol Biomol Spectrosc 229:117937

    Article  CAS  Google Scholar 

  113. Wang H, Lu Q, Li M, Li H, Liu Y, Li H, Zhang Y, Yao S (2018) Electrochemically prepared oxygen and sulfur co-doped graphitic carbon nitride quantum dots for fluorescence determination of copper and silver ions and biothiols. Anal Chim Acta 1027:121–129

    Article  CAS  PubMed  Google Scholar 

  114. Chen W, Kong S, Wang J, Du L, Cai W, Wu C (2019) Enhanced fluorescent effect of graphitic C 3 N 4@ ZIF-8 nanocomposite contribute to its improved sensing capabilities. RSC Adv 9:3734–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu H, Zhu X, Dong Y, Wu H, Chen Y, Chi Y (2016) Highly sensitive electrochemiluminescent sensing platform based on graphite carbon nitride nanosheets for detection of pyrophosphate ion in the synovial fluid. Sens Actuators B Chem 236:8–15

    Article  CAS  Google Scholar 

  116. Chen S, Hao N, Jiang D, Zhang X, Zhou Z, Zhang Y, Wang K (2017) Graphitic carbon nitride quantum dots in situ coupling to Bi2MoO6 nanohybrids with enhanced charge transfer performance and photoelectrochemical detection of copper ion. J Electroanal Chem 787:66–71

    Article  CAS  Google Scholar 

  117. Ncube S, Madikizela L, Cukrowska E, Chimuka L (2018) Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. TrAC, Trends Anal Chem 99:101–116

    Article  CAS  Google Scholar 

  118. Du J, Fan Y, Gan X, Dang X, Zhao H (2020) Three-dimension branched crystalline carbon nitride: a high efficiency photoelectrochemical sensor of trace Cu2+ detection. Electrochim Acta 330:135336

    Article  CAS  Google Scholar 

  119. Cárdenas A, Vázquez A, Obregón S, Ruíz-Gómez M, Rodríguez-González V (2021) New insights into the fluorescent sensing of Fe3+ ions by g-C3N4 prepared from different precursors. Mater Res Bull 142:111385

    Article  Google Scholar 

  120. Liao H, Hu L, Zhang Y, Yu X, Liu Y, Li R (2018) A highly selective colorimetric sulfide assay based on the inhibition of the peroxidase-like activity of copper nanoclusters. Microchim Acta 185:1–6

    Article  CAS  Google Scholar 

  121. Liu Y, Wen G-L, Chen X, Weerasooriya R, Hong Z-Y, Wang L-C, Huang Z-J, Wu Y-C (2020) Construction of electrochemical sensing interface towards Cd (II) based on activated gC 3 N 4 nanosheets: considering the effects of exfoliation and protonation treatment. Anal Bioanal Chem 412:343–353

    Article  CAS  PubMed  Google Scholar 

  122. Radhakrishnan K, Sivanesan S, Panneerselvam P (2020) Turn-On fluorescence sensor based detection of heavy metal ion using carbon dots@ graphitic-carbon nitride nanocomposite probe. J Photochem Photobiol A 389:112204

    Article  CAS  Google Scholar 

  123. Devi M, Das P, Boruah PK, Deka MJ, Duarah R, Gogoi A, Neog D, Dutta HS, Das MR (2021) Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots. J Environ Chem Eng 9:104803

    Article  CAS  Google Scholar 

  124. Sriram B, Baby JN, Wang S-F, Ranjitha RM, Govindasamy M, George M (2020) Eutectic solvent-mediated synthesis of NiFe-LDH/sulfur-doped carbon nitride arrays: investigation of electrocatalytic activity for the dimetridazole sensor in human sustenance. ACS Sustain Chem Eng 8 17772–17782

  125. Bonyadi S, Ghanbari K, Ghiasi M (2020) All-electrochemical synthesis of a three-dimensional mesoporous polymeric gC 3 N 4/PANI/CdO nanocomposite and its application as a novel sensor for the simultaneous determination of epinephrine, paracetamol, mefenamic acid, and ciprofloxacin. New J Chem 44:3412–3424

    Article  CAS  Google Scholar 

  126. Sriram B, Baby JN, Wang S-F, Govindasamy M, George M, Jothiramalingam R (2020) Cobalt molybdate nanorods decorated on boron-doped graphitic carbon nitride sheets for electrochemical sensing of furazolidone. Microchim Acta 187:1–9

    Article  Google Scholar 

  127. Kesavan G, Vinothkumar V, Chen S-M, Thangadurai TD (2021) Construction of metal-free oxygen-doped graphitic carbon nitride as an electrochemical sensing platform for determination of antimicrobial drug metronidazole. Appl Surf Sci 556:149814

    Article  CAS  Google Scholar 

  128. Cao J, Qin C, Wang Y, Zhang B, Gong Y, Zhang H, Sun G, Bala H, Zhang Z (2017) Calcination method synthesis of SnO2/g-C3N4 composites for a high-performance ethanol gas sensing application. Nanomaterials 7:98

    Article  PubMed Central  Google Scholar 

  129. Meng F, Chang Y, Qin W, Yuan Z, Zhao J, Zhang J, Han E, Wang S, Yang M, Shen Y (2019) ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl Nano Mater 2:2734–2742

    Article  CAS  Google Scholar 

  130. Munusamy S, Sivaranjan K, Sabhapathy P, Narayanan V, Mohammad F, Sagadevan S (2021) Enhanced electrochemical and photocatalytic activity of g-C3N4-PANI-PPy nanohybrids. Synth Met 272:116669

    Article  CAS  Google Scholar 

  131. Yanalak G, Doganay F, Eroglu Z, Kucukkececi H, Aslan E, Ozmen M, Bas SZ, Metin O, Patir IH (2021) Ternary nanocomposites of mesoporous graphitic carbon nitride/black phosphorus/gold nanoparticles (mpg-CN/BP-Au) for photocatalytic hydrogen evolution and electrochemical sensing of paracetamol. Appl Surf Sci 557:149755

    Article  CAS  Google Scholar 

  132. Mohanraj J, Durgalakshmi D, Saravanan R (2021) Water-soluble graphitic carbon nitride for clean environmental applications. Environ Pollut 269:116172

    Article  CAS  PubMed  Google Scholar 

  133. Chen J, Ma Q, Wang C, Hu X, Gao Y, Wang H, Qin D, Lu X (2017) A simple fluorescence sensor for the detection of nitrite (NO 2−) in real samples using water-dispersible graphite-like carbon nitride (wgC 3 N 4) nanomaterials. New J Chem 41:7171–7176

    Article  CAS  Google Scholar 

  134. Cao J, Gong Y, Wang Y, Zhang B, Zhang H, Sun G, Bala H, Zhang Z (2017) Cocoon-like ZnO decorated graphitic carbon nitride nanocomposite: hydrothermal synthesis and ethanol gas sensing application. Mater Lett 198:76–80

    Article  CAS  Google Scholar 

  135. Gong Y, Wang Y, Sun G, Jia T, Jia L, Zhang F, Lin L, Zhang B, Cao J, Zhang Z (2018) Carbon nitride decorated ball-flower like Co3O4 hybrid composite: hydrothermal synthesis and ethanol gas sensing application. Nanomaterials 8:132

    Article  PubMed Central  Google Scholar 

  136. Ta QTH, Namgung G, Noh J-S (2019) Synthesis of Ag@ rGO/gC 3 N 4 layered structures and their application to toxic gas sensors: effect of Ag nanoparticles. Electron Mater Lett 15:750–759

    Article  CAS  Google Scholar 

  137. He G, Liu C, Liu X, Wang Q, Fan A, Wang S, Qian X (2017) Design and synthesis of a fluorescent probe based on naphthalene anhydride and its detection of copper ions. PLoS ONE 12:e0186994

    Article  PubMed  PubMed Central  Google Scholar 

  138. Basharnavaz H, Habibi-Yangjeh A, Kamali SH (2020) A first-principle investigation of NO2 adsorption behavior on Co, Rh, and Ir-embedded graphitic carbon nitride: looking for highly sensitive gas sensor. Phys Lett A 384:126057

    Article  CAS  Google Scholar 

  139. Cai Z, Chen J, Xing S, Zheng D, Guo L (2021) Highly fluorescent g-C3N4 nanobelts derived from bulk g-C3N4 for NO2 gas sensing. J Hazard Mater 416:126195

  140. Ullah M, Lv H, Liu Z, Bai X, Chen J, Zhang Y, Wang J, Sun B, Li L, Shi K (2021) Rational fabrication of a g-C3N4/NiO hierarchical nanocomposite with a large surface area for the effective detection of NO2 gas at room temperature. Appl Surf Sci 550:149368

    Article  CAS  Google Scholar 

  141. Ibrahim A, Memon U, Duttagupta S, Mahesh I, Raman RS, Sarkar A, Pendharkar G, Tatiparti S (2020) Nano-structured palladium impregnate graphitic carbon nitride composite for efficient hydrogen gas sensing. Int J Hydrogen Energy 45:10623–10636

    Article  CAS  Google Scholar 

  142. Feng S, Pei F, Wu Y, Lv J, Hao Q, Yang T, Tong Z, Lei W (2021) A ratiometric fluorescent sensor based on g-CNQDs@ Zn-MOF for the sensitive detection of riboflavin via FRET. Spectrochim Acta Part A Mol Biomol Spectrosc 246:119004

    Article  CAS  Google Scholar 

  143. Ellis JE, Sorescu DC, Hwang SI, Burkert SC, White DL, Kim H, Star A (2019) Modification of carbon nitride/reduced graphene oxide van der Waals heterostructure with copper nanoparticles to improve CO2 sensitivity. ACS Appl Mater Interfaces 11:41588–41594

    Article  CAS  PubMed  Google Scholar 

  144. Ibrahim A, Memon U, Duttagupta S, Raman RS, Sarkar A, Pendharkar G, Tatiparti S (2021) Hydrogen gas sensing of nano-confined Pt/g-C3N4 composite at room temperature. Int J Hydrog Energy 46:23962

  145. Xiong S, Yan S, Zhang L, Lv Y (2021) Fluorine functionalized graphitic carbon nitride for cataluminescence sensing of H2S. Sens Actuators, B Chem 339:129855

    Article  CAS  Google Scholar 

  146. Rajput JK (2020) Alkali metal (Na/K) doped graphitic carbon nitride (g-C3N4) for highly selective and sensitive electrochemical sensing of nitrite in water and food samples. J Electroanal Chem 878:114605

    Article  Google Scholar 

  147. Balasubramanian P, Balamurugan T, Chen S-M, Chen T-W (2019) Simplistic synthesis of ultrafine CoMnO3 nanosheets: an excellent electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in environmental water samples. J Hazard Mater 361:123–133

    Article  CAS  PubMed  Google Scholar 

  148. Sangili A, Annalakshmi M, Chen S-M, Balasubramanian P, Sundrarajan M (2019) Synthesis of silver nanoparticles decorated on core-shell structured tannic acid-coated iron oxide nanospheres for excellent electrochemical detection and efficient catalytic reduction of hazardous 4-nitrophenol. Compos B Eng 162:33–42

    Article  CAS  Google Scholar 

  149. Lu S, Xue M, Tao A, Weng Y, Yao B, Weng W, Lin X (2021) Facile microwave-assisted synthesis of functionalized carbon nitride quantum dots as fluorescence probe for fast and highly selective detection of 2, 4, 6-trinitrophenol. J Fluoresc 31:1–9

    Article  CAS  PubMed  Google Scholar 

  150. Mohanta D, Mahanta A, Mishra SR, Jasimuddin S, Ahmaruzzaman M (2021) Novel SnO2@ ZIF-8/gC3N4 nanohybrids for excellent electrochemical performance towards sensing of p-nitrophenol. Environ Res 197:111077

    Article  CAS  PubMed  Google Scholar 

  151. Li X, Wang Y, Tian W, Cao J (2019) Graphitic carbon nitride nanosheets decorated flower-like NiO composites for high-performance triethylamine detection. ACS Omega 4:9645–9653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mori K, Murakami T, Yamashita H (2020) Luminescent single-atom eu-coordinated graphitic carbon nitride nanosheets for selective sensing of acetone and cyclohexane. ACS Appl Nano Mater 3:10209–10217

    Article  CAS  Google Scholar 

  153. Chaudhary V, Nehra SP (2021) Pt-sensitized MoO3/mpg-CN mesoporous nanohybrid: a highly sensitive VOC sensor. Microporous Mesoporous Mater 315:110906

    Article  CAS  Google Scholar 

  154. Ahmad T, Basheer C, Saad B (2019) Derivatization strategies for the determination of biogenic amines with chromatographic techniques. Biog Amines Food 239–267. https://doi.org/10.1039/9781788015813-00239

  155. Rajaji U, Chinnapaiyan S, Chen S-M, Mani G, Alothman AA, Alshgari RA (2021) Bismuth telluride decorated on graphitic carbon nitrides based binary nanosheets: its application in electrochemical determination of salbutamol (feed additive) in meat samples. J Hazard Mater 413:125265

    Article  CAS  PubMed  Google Scholar 

  156. Kalaiyarasi J, Pandian K, Ramanathan S, Gopinath SC (2020) Graphitic carbon nitride/graphene nanoflakes hybrid system for electrochemical sensing of DNA bases in meat samples. Sci Rep 10:1–16

    Article  Google Scholar 

  157. Singh H, Rajput JK (2021) Graphitic carbon nitride nanosheets (g-C3N4 NS) as dual responsive template for fluorescent sensing as well as degradation of food colorants. Food Chem 343:128451

    Article  PubMed  Google Scholar 

  158. Mao L, Xue X, Xu X, Wen W, Chen M-M, Zhang X, Wang S (2021) Heterostructured CuO-g-C3N4 nanocomposites as a highly efficient photocathode for photoelectrochemical aflatoxin B1 sensing. Sens Actuators, B Chem 329:129146

    Article  CAS  Google Scholar 

  159. Kesavan G, Chen S-M (2020) Highly sensitive electrochemical sensor based on carbon-rich graphitic carbon nitride as an electrocatalyst for the detection of diphenylamine. Microchem J 159:105587

    Article  CAS  Google Scholar 

  160. Meng W, Wu S, Wang X, Zhang D (2020) High-sensitivity resistive humidity sensor based on graphitic carbon nitride nanosheets and its application. Sens Actuators B Chem 315:128058

    Article  CAS  Google Scholar 

  161. Li M, He B (2021) Ultrasensitive sandwich-type electrochemical biosensor based on octahedral gold nanoparticles modified poly (ethylenimine) functionalized graphitic carbon nitride nanosheets for the determination of sulfamethazine. Sens Actuators, B Chem 329:129158

    Article  CAS  Google Scholar 

  162. Xin-Rui Y, Jun L, Long-Fei K, Meng-Ya L, Hong-Li L, Cheng Q, Meng W, ZHANG X-F, Lu Y, Jin-Yan H (2021) AuNPs/g-C3N4/BiOCl0. 5Br0. 5 Heterojunction sensitizing sensor for photoelectrochemical sensing of 2-chloroethyl phosphoric acid. Chin J Anal Chem 49 798–808

  163. Luo W, Zhao T, Li Y, Wei J, Xu P, Li X, Wang Y, Zhang W, Elzatahry AA, Alghamdi A (2016) A micelle fusion–aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing. J Am Chem Soc 138:12586–12595

    Article  CAS  PubMed  Google Scholar 

  164. Gong L, Wang X, Zhang D, Ma X, Yu S (2021) Flexible wearable humidity sensor based on cerium oxide/graphitic carbon nitride nanocomposite self-powered by motion-driven alternator and its application for human physiological detection. J Mater Chem A 9:5619–5629

    Article  CAS  Google Scholar 

  165. Tomer VK, Thangaraj N, Gahlot S, Kailasam K (2016) Cubic mesoporous Ag@ CN: a high performance humidity sensor. Nanoscale 8:19794–19803

    Article  CAS  PubMed  Google Scholar 

  166. Yu S, Chen C, Zhang H, Zhang J, Liu J (2021) Design of high sensitivity graphite carbon nitride/zinc oxide humidity sensor for breath detection. Sens Actuators B Chem 332:129536

    Article  CAS  Google Scholar 

  167. Nawaz M, Taha M, Qureshi F, Ullah N, Selvaraj M, Shahzad S, Chigurupati S, Abubshait SA, Ahmad T, Chinnam S (2021) Synthesis, α-amylase and α-glucosidase inhibition and molecular docking studies of indazole derivatives. J Biomol Struct Dyn 1–11. https://doi.org/10.1080/07391102.2021.1947892

  168. Imran H, Manikandan PN, Dharuman V (2021) Highly selective and rapid non-enzymatic glucose sensing at ultrathin layered Nb doped C3N4 for extended linearity range. Microchem J 160:105774

    Article  CAS  Google Scholar 

  169. Ngo Y-LT, Chung JS, Hur SH (2019) Aminoboronic acid-functionalized graphitic carbon nitride quantum dots for the photoluminescence multi-chemical sensing probe. Dyes Pigm 168:180–188

    Article  Google Scholar 

  170. Ngo Y-LT, Choi WM, Chung JS, Hur SH (2019) Highly biocompatible phenylboronic acid-functionalized graphitic carbon nitride quantum dots for the selective glucose sensor. Sens Actuators B Chem 282:36–44

    Article  CAS  Google Scholar 

  171. Dante RC, Trakulmututa J, Meejoo-Smith S, Sirisit N, Martín-Ramos P, Chamorro-Posada P, Rutto D, Dante DG (2021) A solid-state glucose sensor based on Cu and Fe–doped carbon nitride. Mater Chem Phys 258:124023

    Article  CAS  Google Scholar 

  172. Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y, Xiao F, Liu H (2022) Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: a textile sensor for H2O2 detection in clinical cancer tissues. Chem Eng J 427:131398

    Article  CAS  Google Scholar 

  173. Asif M, Haitao W, Shuang D, Aziz A, Zhang G, Xiao F, Liu H (2017) Metal oxide intercalated layered double hydroxide nanosphere: with enhanced electrocatalyic activity towards H2O2 for biological applications. Sens Actuators B Chem 239:243–252

    Article  CAS  Google Scholar 

  174. Cheng X, Xu C, Chen Q, Wang Y, Zhang Y, Fan G (2019) Electrochemical performance of ruthenium nanoparticles decorated on nitride carbon for non-enzymatic detection of hydrogen peroxide. Analyst 144:6706–6711

    Article  CAS  PubMed  Google Scholar 

  175. Hallaj T, Amjadi M, Song Z, Bagheri R (2018) Strong enhancement of the chemiluminescence of the Cu (II)-H 2 O 2 system on addition of carbon nitride quantum dots, and its application to the detection of H 2 O 2 and glucose. Microchim Acta 185:67

    Article  Google Scholar 

  176. Mohammad A, Khan ME, Yoon T, Cho MH (2020) Na, O-co-doped-graphitic-carbon nitride (Na, Og-C3N4) for nonenzymatic electrochemical sensing of hydrogen peroxide. Appl Surf Sci 525:146353

    Article  CAS  Google Scholar 

  177. Capilli G, Cavalera S, Anfossi L, Giovannoli C, Minella M, Baggiani C, Minero C (2019) Amine-rich carbon nitride nanoparticles: synthesis, covalent functionalization with proteins and application in a fluorescence quenching assay. Nano Res 12:1862–1870

    Article  CAS  Google Scholar 

  178. Yang J-Y, Jia X-D, Gao R-X, Chen M-L, Yang T, Wang J-H (2021) Discrimination of pathogenic bacteria with boronic acid modified protonated g-C3N4 nanosheets at various pHs. Sens Actuators B Chem 340:129951

    Article  CAS  Google Scholar 

  179. Guo Z, Li B, Zhang Y, Zhao Q, Zhao J, Li L, Feng L, Wang M, Meng X, Zuo G (2019) Acid-treated graphitic carbon nitride nanosheets as fluorescence probe for detection of hemin. ChemistrySelect 4:8178–8182

    Article  CAS  Google Scholar 

  180. Song Z, Li Z, Lin L, Zhang Y, Lin T, Chen L, Cai Z, Lin S, Guo L, Fu F (2017) Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging. Nanoscale 9:17737–17742

    Article  CAS  PubMed  Google Scholar 

  181. Zhao L, Ji J, Shen Y, Wu K, Zhao T, Yang H, Lv Y, Liu S, Zhang Y (2019) Exfoliation and sensitization of 2D carbon nitride for photoelectrochemical biosensing under red light. Chem–A Eur J 25:15680–15686

  182. Chen B, Wang F, Yao W, Lin Z, Zhang X, Luo S, Zheng L, Lin X (2018) Carbon nitride quantum dot-enhanced chemiluminescence of hydrogen peroxide and hydrosulfite and its application in ascorbic acid sensing. Anal Methods 10:474–480

    Article  Google Scholar 

  183. Wang L et al (2019) Single-stranded DNA modified protonated graphitic carbon nitride nanosheets: A versatile ratiometric fluorescence platform for multiplex detection of various targets. Talanta 197:422–430423

    Article  CAS  PubMed  Google Scholar 

  184. Elshikh MS, Chen T-W, Mani G, Chen S-M, Huang P-J, Ali MA, Al-Hemaid FM, Al-Mohaimeed AM (2021) Green sonochemical synthesis and fabrication of cubic MnFe2O4 electrocatalyst decorated carbon nitride nanohybrid for neurotransmitter detection in serum samples. Ultrason Sonochem 70:105305

    Article  CAS  PubMed  Google Scholar 

  185. Shirani M, Kalantari H, Khodayar MJ, Kouchak M, Rahbar N (2020) A novel strategy for detection of small molecules based on aptamer/gold nanoparticles/graphitic carbon nitride nanosheets as fluorescent biosensor. Talanta 219:121235

    Article  CAS  PubMed  Google Scholar 

  186. Mo G, He X, Qin D, Meng S, Wu Y, Deng B (2021) Spatially-resolved dual-potential sandwich electrochemiluminescence immunosensor for the simultaneous determination of carbohydrate antigen 19–9 and carbohydrate antigen 24–2. Biosens Bioelectron 178:113024

    Article  CAS  PubMed  Google Scholar 

  187. Singh AK, Jaiswal N, Gautam RK, Tiwari I (2021) Development of g-C3N4/Cu-DTO MOF nanocomposite based electrochemical sensor towards sensitive determination of an endocrine disruptor BPSIP. J Electroanal Chem 887:115170

    Article  CAS  Google Scholar 

  188. Zhang Q, Liu Y, Nie Y, Liu Y, Ma Q (2019) Wavelength-dependent surface plasmon coupling electrochemiluminescence biosensor based on Sulfur-Doped carbon nitride quantum dots for K-RAS gene detection. Anal Chem 91:13780–13786

    Article  CAS  PubMed  Google Scholar 

  189. Ponnaiah SK, Prakash P, Muthupandian S (2019) Ultrasonic energy-assisted in-situ synthesis of Ru0/PANI/g-C3N4 nanocomposite: application for picomolar-level electrochemical detection of endocrine disruptor (bisphenol-A) in humans and animals. Ultrason Sonochem 58:104629

    Article  CAS  PubMed  Google Scholar 

  190. Jha RK, D’Costa JV, Sakhuja N, Bhat N (2019) MoSe2 nanoflakes based chemiresistive sensors for ppb-level hydrogen sulfide gas detection. Sens Actuators B Chem 297:126687

    Article  CAS  Google Scholar 

  191. Liang L, Wang J, Lin W, Sumpter BG, Meunier V, Pan M (2014) Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett 14:6400–6406

    Article  CAS  PubMed  Google Scholar 

  192. Fan FR, Wang R, Zhang H, Wu W (2021) Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem Soc Rev 50:10983–11031

    Article  CAS  PubMed  Google Scholar 

  193. Xia B, Chu M, Wang S, Wang W, Yang S, Liu C, Luo S (2015) Graphene oxide amplified electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive sensing for Cu2+. Anal Chim Acta 891:113–119

    Article  CAS  PubMed  Google Scholar 

  194. He Q, Tian Y, Wu Y, Liu J, Li G, Deng P, Chen D (2019) Facile and ultrasensitive determination of 4-nitrophenol based on acetylene black paste and graphene hybrid electrode. Nanomaterials 9:429

    Article  CAS  PubMed Central  Google Scholar 

  195. Liu J, Wang H, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chem Soc Rev 45:2308–2326

    Article  CAS  PubMed  Google Scholar 

  196. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  CAS  PubMed  Google Scholar 

  197. Gu X, Yang R (2015) First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene. J Appl Phys 117:025102

    Article  Google Scholar 

  198. Lee HL, Sofer Z, Mazánek V, Luxa J, Chua CK, Pumera M (2017) Graphitic carbon nitride: effects of various precursors on the structural, morphological and electrochemical sensing properties, Applied. Mater Today 8:150–162

    Google Scholar 

Download references

Funding

This work was funded by the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia through the project number DRI 74.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tahir Rasheed or Nisar Ullah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, T., Khan, S., Rasheed, T. et al. Graphitic carbon nitride nanosheets as promising candidates for the detection of hazardous contaminants of environmental and biological concern in aqueous matrices. Microchim Acta 189, 426 (2022). https://doi.org/10.1007/s00604-022-05516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05516-x

Keywords

Navigation