Skip to main content
Log in

Controllable fabrication of silver-deposited polyurethane acrylate nanopillar array film as a flexible surface-enhanced Raman scattering (SERS) substrate with high sensitivity and reproducibility

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A controllable method for fabricating flexible surface-enhanced Raman scattering (SERS) substrates is demonstrated by depositing silver onto a flexible nanopillar array film. The flexible nanopillar array film was cost-effectively prepared by replicating an anodic aluminum oxide (AAO) template with UV-curable polyurethane acrylate (PUA) over a large area. Then, the deposition of silver was done by an Ar-assisted thermal evaporation. In the deposition process, the partial pressure of Ar was optimized because it has a significant influence on the SERS intensity through the microstructural changes of silver deposited on PUA nanopillars. In addition, the increase in the nanopillar diameter and height enhanced the SERS intensity obtained at 785-nm excitation because of the increased number of hot spots. However, the agglomeration of Ag-deposited nanopillars, which is caused by high aspect ratios, negatively affected the SERS performance in terms of intensity and standard deviation. The optimized Ag-deposited nanopillar array film with nanopillar diameters and heights of 80 nm and 200 nm exhibited excellent SERS sensitivity and signal reproducibility with stable mechanical flexibility. For application in food and biomedical analysis, it was used for detecting saccharin and peptide and showed a good linear relationship between the SERS intensity and concentration. These findings demonstrate the suitability of our method for the controllable fabrication and optimization of flexible SERS substrates with high sensitivity and reproducibility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217

    Article  CAS  Google Scholar 

  2. Fan M, Andrade GF, Brolo AG (2020) A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 1097:1–29

    Article  CAS  PubMed  Google Scholar 

  3. Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SE, Boisen A, Brolo AG (2019) Present and future of surface-enhanced Raman scattering. ACS Nano 14(1):28–117

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bell SE, Charron G, Cortés E, Kneipp J, de la Chapelle ML, Langer J, Procházka M, Tran V, Schlücker S (2020) Towards reliable and quantitative surface-enhanced raman scattering (SERS): from key parameters to good analytical practice. Angew Chem Int Ed 59(14):5454–5462

    Article  CAS  Google Scholar 

  5. Akinoglu GE, Mir SH, Gatensby R, Rydzek G, Mokarian-Tabari P (2020) Block copolymer derived vertically coupled plasmonic arrays for surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 12(20):23410–23416

    Article  CAS  PubMed  Google Scholar 

  6. Chen K-H, Pan M-J, Jargalsaikhan Z, Ishdorj T-O, Tseng F-G (2020) Development of surface-enhanced Raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal canceR. Biosensors 10(11):163

    Article  CAS  PubMed Central  Google Scholar 

  7. Liu X, Lebedkin S, Besser H, Pfleging W, Prinz S, Wissmann M, Schwab PM, Nazarenko I, Guttmann M, Kappes MM (2015) Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers. ACS Nano 9(1):260–270

    Article  CAS  PubMed  Google Scholar 

  8. Kim AN, Lim H, Lee HN, Park YM, Yoo B, Kim H-J (2018) Large-area and cost-effective fabrication of Ag-coated polymeric nanopillar array for surface-enhanced Raman spectroscopy. Appl Surf Sci 446:114–121

    Article  CAS  Google Scholar 

  9. Chang T-W, Gartia MR, Seo S, Hsiao A, Liu GL (2014) A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication. Nanotechnol 25(14):145304

    Article  Google Scholar 

  10. Zhao W, Liu X, Xu Y, Wang S, Sun T, Liu S, Wu X, Xu Z (2016) Polymer nanopillar array with Au nanoparticle inlays as a flexible and transparent SERS substrate. RSC Adv 6(42):35527–35531

    Article  CAS  Google Scholar 

  11. Kalachyova Y, Erzina M, Postnikov P, Svorcik V, Lyutakov O (2018) Flexible SERS substrate for portable Raman analysis of biosamples. Appl Surf Sci 458:95–99

    Article  CAS  Google Scholar 

  12. Xu K, Zhou R, Takei K, Hong M (2019) Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Advanced Science 6(16):1900925

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang C, Yi P, Peng L, Lai X, Chen J, Huang M, Ni J (2017) Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci Rep 7(1):1–9

    Article  Google Scholar 

  14. Park YM, Hwang SH, Lim H, Lee H-N, Kim H-J (2020) Scalable and V ersatile fabrication of metallic nanofoam films with controllable nanostructure using Ar-assisted thermal evaporation. Chem Mater 33(1):205–211

    Article  Google Scholar 

  15. Choi K, Park SH, Song YM, Lee YT, Hwangbo CK, Yang H, Lee HS (2010) Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film. Adv Mater 22(33):3713–3718

    Article  CAS  PubMed  Google Scholar 

  16. Peng L, Zhang C, Wu H, Yi P, Lai X, Ni J (2016) Continuous fabrication of multiscale compound eyes arrays with antireflection and hydrophobic properties. IEEE Trans Nanotechnol 15(6):971–976

    Article  CAS  Google Scholar 

  17. Purwidyantri A, El-Mekki I, Lai C-S (2017) Tunable plasmonic SERS “hotspots” on Au-film over nanosphere by rapid thermal annealing. IEEE Trans Nanotechnol 16(4):551–559

    Article  CAS  Google Scholar 

  18. Shi GC, Wang ML, Zhu YY, Shen L, Ma WL, Wang YH, Li RF (2018) Dragonfly wing decorated by gold nanoislands as flexible and stable substrates for surface-enhanced Raman scattering (SERS). Sci Rep 8(1):1–11

    Google Scholar 

  19. Dai J, Gong J, Kong N, Yao Y (2020) Cellular architecture response to aspect ratio tunable nanoarrays. Nanoscale 12(23):12395–12404

    Article  CAS  PubMed  Google Scholar 

  20. Chen B, Meng G, Huang Q, Huang Z, Xu Q, Zhu C, Qian Y, Ding Y (2014) Green synthesis of large-scale highly ordered core@ shell nanoporous Au@ Ag nanorod arrays as sensitive and reproducible 3D SERS substrates. ACS Appl Mater Interfaces 6(18):15667–15675

    Article  CAS  PubMed  Google Scholar 

  21. Oh YJ, Jeong KH (2012) Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv Mater 24(17):2234–2237

    Article  CAS  PubMed  Google Scholar 

  22. Yue W, Gong T, Long X, Kravets V, Gao P, Pu M, Wang C (2020) Sensitive and reproducible surface-enhanced Raman spectroscopy (SERS) with arrays of dimer-nanopillars. Sens Actuators, B Chem 322:128563

    Article  CAS  Google Scholar 

  23. Fassel V (1976) International union of pure and applied chemistry. analytical chemistry division. commission on spectrochemical and other optical procedures for analysis. nomenclature, symbols, units and their usage in spectrochemical analysis. ii. data interpretation. (Rules approved 1975). Anal Chem 48(14):2294–2296

    Article  CAS  Google Scholar 

  24. Wali LA, Hasan KK, Alwan AM (2019) Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate. Spectrochim Acta Part A Mol Biomol Spectrosc 206:31–36

    Article  CAS  Google Scholar 

  25. Wali LA, Hasan KK, Alwan AM (2020) An investigation of efficient detection of ultra-low concentration of penicillins in milk using AuNPs/PSi hybrid structure. Plasmonics 15(4):985–993

    Article  CAS  Google Scholar 

  26. Li Z, Zhang F, Zhao J, Liu X, Chen X, Su Y, Guo Y (2018) High-throughput quantification of sodium saccharin in foods by ambient flame ionization mass spectrometry. Talanta 182:241–246

    Article  CAS  PubMed  Google Scholar 

  27. Han C, Yao Y, Wang W, Qu L, Bradley L, Sun S, Zhao Y (2017) Rapid and sensitive detection of sodium saccharin in soft drinks by silver nanorod array SERS substrates. Sens Actuators, B Chem 251:272–279

    Article  CAS  Google Scholar 

  28. Lee G, Eom K, Park J, Yang J, Haam S, Huh YM, Ryu JK, Kim NH, Yook JI, Lee SW (2012) Real-time quantitative monitoring of specific peptide cleavage by a proteinase for cancer diagnosis. Angew Chem 124(24):5939–5943

    Article  Google Scholar 

  29. Hong Y, Ku M, Lee E, Suh J-S, Huh Y-M, Yoon D-S, Yang J (2013) Localized surface plasmon resonance based nanobiosensor for biomarker detection of invasive cancer cells. J Biomed Opt 19(5):051202

    Article  Google Scholar 

  30. Yang S, Liu G, Meng L, Wang X, Xiong Y, Luo Q, Feng S (2021) Gap-dependent SERS effect of ordered composite plasmonic nanoparticle arrays and its application for detection of sodium saccharin. Opt Mater 112:110788

    Article  CAS  Google Scholar 

  31. Stewart S, Fredericks P (1999) Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface. Spectrochim Acta Part A Mol Biomol Spectrosc 55(7–8):1615–1640

    Article  Google Scholar 

Download references

Funding

This work was supported by R&D program of KITECH and Technology Innovation Program of the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Hyun Pyun or Hyun-Jong Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5582 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H., Jeon, C.S., Park, Y.M. et al. Controllable fabrication of silver-deposited polyurethane acrylate nanopillar array film as a flexible surface-enhanced Raman scattering (SERS) substrate with high sensitivity and reproducibility. Microchim Acta 189, 288 (2022). https://doi.org/10.1007/s00604-022-05391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05391-6

Keywords

Navigation