Skip to main content

Advertisement

Log in

Coupled electrochemiluminescent and resonance energy transfer determination of microRNA-141 using functionalized Mxene composite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemiluminescence and resonance energy transfer (ECL-RET) method was adopted to detect miRNAs, in which the two-dimensional Ti3C2 Mxenes with high surface area modified with CdS:W nanocrystals (CdS:W NCs) were used as ECL signal emitter. Mxenes with a specific surface area of 5.2755 m2/g carried more emitters and promote ECL intensity. As an energy acceptor, BiOCl nanosheets (BiOCl NSs) have a wide UV–Vis absorption peak in the range 250 nm–700 nm, including the emission band of CdS:W NCs with 520 nm emission wavelength. Hence, BiOCl NSs are covalently bound to hairpin DNA 2 by amide bond to quench the ECL signal of CdS:W NCs. In the presence of miRNA-141, the hairpin DNA 1 modified on the GCE was unfold and then paired with hairpin DNA 2 to release miRNA-141 and quench the signal of the ECL biosensor. Then, the concentration signal of miRNA-141 was amplified by catalytic hairpin assembly. The novel specific biosensor demonstrated a satisfactory linear relationship with miRNA-141 in the range 0.6 pM to 4000 pM; the detection limit was as low as 0.26 pM (3 s/m) under the potential of 0 ~ -1.3 V and showed outstanding RSD of 1.19%. The findings of the present work with high accuracy and sensitivity will be of positive significance for the clinical diagnosis of miRNA in the future work.

Graphical abstract

The construction process of the biosensor and electrochemiluminescence mechanism

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  2. Tian T, Wang J, Zhou X (2015) A review: microRNA detection methods. Org Biomol Chem 13:2226–2238. https://doi.org/10.1039/C4OB02104E

    Article  CAS  PubMed  Google Scholar 

  3. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175. https://doi.org/10.1093/nar/gnh171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee I, Ajay SS, Chen H, Maruyama A, Wang N, McInnis MG (2008) Discriminating single-base difference miRNA expressions using microarray Probe Design Guru (ProDeG). Nucleic Acids Res 36:e27. https://doi.org/10.1093/nar/gkm1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang X, Nie Y, Zhang Q, Liang Z, Wang P, Ma Q (2021) Polydopamine nanoparticles@MoS2 nanosheet aerogel-based ECL sensing system for MiRNA-126 detection. Chem Eng J 411:128428. https://doi.org/10.1016/j.cej.2021.128428

    Article  CAS  Google Scholar 

  6. Yang J, Fu S, Luo F, Guo Qiu B, Lin Z (2021) Homogeneous photoelectrochemical biosensor for microRNA based on target-responsive hydrogel coupled with exonuclease III and nicking endonuclease Nb.BbvCI assistant cascaded amplification strategy. Microchim Acta 188:267. https://doi.org/10.1007/s00604-021-04935-6

    Article  CAS  Google Scholar 

  7. Chu Y, Han T, Deng A, Li L, Zhu JJ (2019) Resonance energy transfer in electrochemiluminescent and photoelectrochemical bioanalysis. Trends Anal Chem 123:115745. https://doi.org/10.1016/j.trac.2019.115745

    Article  CAS  Google Scholar 

  8. Deng L, Shan Y, Xu JJ, Chen HY (2012) Electrochemiluminescence behaviors of Eu3+-doped CdS nanocrystals film in aqueous solution. Nanoscale 4:831–836. https://doi.org/10.1039/C1NR11470K

    Article  CAS  PubMed  Google Scholar 

  9. Zhu W, Saddam Khan M, Cao W, Sun X, Ma H, Zhang Y, Wei Q (2018) Ni(OH)2/NGQDs-based electrochemiluminescence immunosensor for prostate specific antigen detection by coupling resonance energy transfer with Fe3O4@MnO2 composites. Biosens Bioelectron 99:346–352. https://doi.org/10.1016/j.bios.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Feng D, Kan X (2022) The combination of highly efficient resonance energy transfer in one nanocomposite and ferrocene-quenching for ultrasensitive electrochemiluminescence bioanalysis. Biosens Bioelectron 210:114347. https://doi.org/10.1016/j.bios.2022.114347

    Article  CAS  PubMed  Google Scholar 

  11. Cao JT, Fu YZ, Fu XL, Ren SW (2022) Dual-wavelength electrochemiluminescence ratiometry for hydrogen sulfide detection based on Cd2+-doped g-C3N4 nanosheets. Analyst 147:247–251. https://doi.org/10.1039/d1an01873f

    Article  CAS  PubMed  Google Scholar 

  12. Wang XF, Xu JJ, Chen HY (2008) A new electrochemiluminescence emission of Mn2+ doped ZnS nanocrystals in aqueous solution. J Phys Chem C 112:17581–17585. https://doi.org/10.1021/jp807136s

    Article  CAS  Google Scholar 

  13. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry andelectrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297. https://doi.org/10.1126/science.1069336

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Zhou S, Li L, Zhu JJ (2017) Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 12:98–115. https://doi.org/10.1016/j.nantod.2016.12.013

    Article  CAS  Google Scholar 

  15. Du X, Jiang D, Liu Q, Qian J, Mao H, Wang K (2015) Enhanced electrochemiluminescence sensing platform using nitrogen-doped graphene as a novel two-dimensional mat of silver nanoparticles. Talanta 132:146–149. https://doi.org/10.1016/j.talanta.2014.08.065

    Article  CAS  PubMed  Google Scholar 

  16. Chaudhari NK, Jin H, Kim B, San Baek D, Joo SH, Lee K (2017) MXene: an emerging two-dimensional material for future energy conversion and storage applications. J Mater Chem A 5:24564–24579. https://doi.org/10.1039/C7TA09094C

    Article  CAS  Google Scholar 

  17. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005. https://doi.org/10.1002/adma.201304138

    Article  CAS  PubMed  Google Scholar 

  18. Osti NC, Naguib M, Ostadhossein A, Xie Y, Kent PR, Dyatkin B, Rother G, Heller WT, Van Duin AC, Gogotsi Y, Mamontov E (2016) Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl Mater Interfaces 8:8859–8863. https://doi.org/10.1021/acsami.6b01490

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Yin X, Han M, Song C, Xu H, Hou Z, Zhang L, Cheng L (2017) Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C 5:4068–4074. https://doi.org/10.1039/c6tc05226f

    Article  CAS  Google Scholar 

  20. Chen L, Zeng X, Si P, Chen Y, Chi Y, Kim DH, Chen G (2014) Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem 86:4188–4195. https://doi.org/10.1021/ac403635f

    Article  CAS  PubMed  Google Scholar 

  21. Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1:589–594. https://doi.org/10.1021/acsenergylett.6b00247

    Article  CAS  Google Scholar 

  22. Me A, Kg A, Sv B, Mt A (2012) Structural, optical and magnetic studies on non-aqueous synthesized CdS: Mn nanomaterials-Science Direct. J Alloys Compd 538:48–55. https://doi.org/10.1016/j.jallcom.2012.05.127

    Article  CAS  Google Scholar 

  23. Rajendran R, Varadharajan K, Jayaraman V, Singaram B, Jeyaram J (2018) Photocatalytic degradation of metronidazole and methylene blue by PVA-assisted Bi2WO6-CdS nanocomposite film under visible light irradiation. Appl Nano Sci 8:61–78. https://doi.org/10.1007/s13204-018-0652-9

    Article  CAS  Google Scholar 

  24. Zhang Q, Teng J, Zou G, Peng Q, Du Q, Jiao T, Xiang J (2016) Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 13:7085–7093. https://doi.org/10.1039/C5NR09303A

    Article  CAS  Google Scholar 

  25. Dai H, Wu X, Wang Y, Zhou W, Chen G (2008) An electrochemiluminescent biosensor for vitamin C based on inhibition of luminol electrochemiluminescence on graphite/poly(methylmethacrylate) composite electrode. Electrochim Acta 53:5113–5117. https://doi.org/10.1016/j.electacta.2008.02.044

    Article  CAS  Google Scholar 

  26. Nie Y, Yuan X, Zhang P, Chai YQ, Yuan R (2019) Versatile and ultrasensitive electrochemiluminescence biosensor for biomarker detection based on nonenzymatic amplification and aptamer-triggered emitter release. Anal Chem 91:3452–3458. https://doi.org/10.1016/10.1021/acs.analchem.8b05001

    Article  CAS  PubMed  Google Scholar 

  27. Tavallaie R, McCarroll J, Le Grand M, Ariotti N, Schuhmann W, Bakker E, Tilley RD, Hibbert DB, Kavallaris M, Gooding JJ (2018) Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nat Nanotechnol 11:1066–1071. https://doi.org/10.1038/s41565-018-0232-x

    Article  CAS  Google Scholar 

  28. Shi CX, Li YZ, Liu Q, Chen ZP, Li SS, Yu RQ (2021) Label-free microRNA detection through analyzing the length distribution pattern of the residual fragments of probe DNA produced during exonuclease III assisted signal amplification by mass spectrometry. Talanta 231:122414. https://doi.org/10.1016/j.talanta.2021.122414

    Article  CAS  PubMed  Google Scholar 

  29. Li M, Xu X, Cai Q (2021) DNA polymerase/NEase-assisted signal amplification coupled with silver nanoclusters for simultaneous detection of multiple microRNAs and molecular logic operations. Sensors Actuators B Chem 327:128915. https://doi.org/10.1016/j.snb.2020.128915

    Article  CAS  Google Scholar 

  30. Cheng X, Ren D, Xu G, Wei F, Yang J, Xu J, Wang L, Hu Q, Cen Y (2021) Metal-organic frameworks-assisted nonenzymatic cascade amplification multiplexed strategy for sensing acute myocardial infarction related microRNAs. Biosens Bioelectron 196:113706. https://doi.org/10.1016/j.bios.2021.113706

    Article  CAS  PubMed  Google Scholar 

  31. Ying ZM, Tu B, Liu L, Tang H, Tang LJ, Jiang JH (2018) Spinach-based fluorescent light-up biosensors for multiplexed and label-free detection of microRNAs. Chem Commun 24:3010–3013. https://doi.org/10.1039/C8CC00123E

    Article  Google Scholar 

  32. Slabý J, Bocková M, Homola J (2021) Plasmonic biosensor based on a gold nanostripe array for detection of microRNA related to myelodysplastic syndromes. Sensors Actuators B Chem 347:130629. https://doi.org/10.1016/j.snb.2021.130629

    Article  CAS  Google Scholar 

  33. Tu W, Cao H, Zhang L, Bao J, Liu X, Dai Z (2016) Dual signal amplification using gold nanoparticles-enhanced zinc selenide nanoflakes and P19 protein for ultrasensitive photoelectrochemical biosensing of microRNA in cell. Anal Chem 88:10459–10465. https://doi.org/10.1021/acs.analchem.6b02381

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21976001). Natural Science Foundation of Anhui Province (1508085MB37). University Collaborative Innovation Project of Anhui Province (GXXT-2019-023). Natural Science Research Projects of Universities in Anhui Province (KJ2021A0030). Open fund for Discipline Construction of Institute of Physical Science and Information Technology.

Author information

Authors and Affiliations

Authors

Contributions

Jin-Feng Du was involved in conceptualization, investigation, writing—original draft. Jing-Shuai Chen helped in methodology, investigation. Xing-Pei Liu contributed to validation. Chang-Jie Mao was involved in supervision, writing—review & editing. Bao-Kang Jin helped in writing—review & editing.

Corresponding authors

Correspondence to Xing-Pei Liu or Chang-Jie Mao.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, JF., Chen, JS., Liu, XP. et al. Coupled electrochemiluminescent and resonance energy transfer determination of microRNA-141 using functionalized Mxene composite. Microchim Acta 189, 264 (2022). https://doi.org/10.1007/s00604-022-05359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05359-6

Keywords

Navigation