Skip to main content

Advertisement

Log in

An insight into the potentials of carbon dots for in vitro live-cell imaging: recent progress, challenges, and prospects

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

This article has been updated

Abstract

Carbon dots (CDs) are a strong alternative to conventional fluorescent probes for cell imaging due to their brightness, photostability, tunable fluorescence emission, low toxicity, inexpensive preparation, and chemical diversity. Improving the targeting efficiency by modulation of the surface functional groups and understanding the mechanisms of targeted imaging are the most challenging issues in cell imaging by CDs. Firstly, we briefly discuss important features of fluorescent CDs for live-cell imaging application in this review. Then, the newest modulated CDs for targeted live-cell imaging of whole-cell, cell organelles, pH, ions, small molecules, and proteins are elaborately discussed, and their challenges in these fields are explained.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 27 April 2022

    The original version of this paper was updated to change Bijan Ranjbar email address to ranjbarb@modares.ac.ir.

References

  1. Arandian A et al (2019) Optical imaging approaches to monitor static and dynamic cell-on-chip platforms: a tutorial review. Small 15(28):1900737

    Article  Google Scholar 

  2. Nowzari, F., et al 2021 Three-dimensional imaging in stem cell-based researches. Frontiers in Veterinary Science, 8

  3. Ali H, Ghosh S, Jana NR (2020) Fluorescent carbon dots as intracellular imaging probes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 12(4):e1617

    CAS  PubMed  Google Scholar 

  4. Kiepas A et al (2020) Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. Journal of cell science 133(4):242834

    Article  Google Scholar 

  5. Jin D et al (2018) Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Methods 15(6):415–423

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Q., et al 2021 Quantum dots on cell imaging and safety issues. Journal of Materials Chemistry B

  7. Wu, F.-G 2020 Fluorescent materials for cell imaging. Springer

  8. Hakiminia F et al (2016) Adjustment of local conformational flexibility and accessible surface area alterations of Serine128 and Valine183 in mnemiopsin. J Mol Struct 1117:287–292

    Article  CAS  Google Scholar 

  9. Hakiminia F et al (2016) Determination of structural elements on the folding reaction of mnemiopsin by spectroscopic techniques. Spectrochim Acta Part A Mol Biomol Spectrosc 158:49–55

    Article  CAS  Google Scholar 

  10. Hakiminia F, Ranjbar B, Khalifeh K (2013) Kinetic and thermodynamic properties of Pseudomonas fluorescence lipase upon addition of proline. Int J Biol Macromol 55:123–126

    Article  CAS  PubMed  Google Scholar 

  11. Ganjalikhany MR et al (2010) Roles of trehalose and magnesium sulfate on structural and functional stability of firefly luciferase. J Mol Catal B Enzym 62(2):127–132

    Article  CAS  Google Scholar 

  12. Yousefi-Nejad M et al (2007) Expression, purification and immobilization of firefly luciferase on alkyl-substituted Sepharose 4B. Enzyme Microb Technol 40(4):740–746

    Article  CAS  Google Scholar 

  13. Maghami P et al (2010) Relationship between stability and bioluminescence color of firefly luciferase. Photochem Photobiol Sci 9(3):376–383

    Article  CAS  PubMed  Google Scholar 

  14. Badoei-Dalfard A et al (2010) Enhanced activity and stability in the presence of organic solvents by increased active site polarity and stabilization of a surface loop in a metalloprotease. J Biochem 148(2):231–238

    Article  CAS  PubMed  Google Scholar 

  15. Traenkle B, Rothbauer U (2017) Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 8:1030

    Article  PubMed  PubMed Central  Google Scholar 

  16. Klein T et al (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8(1):7–9

    Article  CAS  PubMed  Google Scholar 

  17. Behroodi E et al (2020) A combined 3D printing/CNC micro-milling method to fabricate a large-scale microfluidic device with the small size 3D architectures: an application for tumor spheroid production. Sci Rep 10(1):1–14

    Article  Google Scholar 

  18. Azizi A et al (2014) Surface plasmon resonance coupled circular dichroism of DNA–gold nanorods assembly. J Phys D: App Phys 47(31):315401

    Article  Google Scholar 

  19. Rahimifard, M., et al 2021 Assessment of cytotoxic effects of new derivatives of pyrazino [1, 2-a] benzimidazole on isolated human glioblastoma cells and mitochondria. Life Sciences 120022

  20. Azizi A et al (2014) Plasmonic circular dichroism study of DNA–gold nanoparticles bioconjugates. Plasmonics 9(2):273–281

    Article  CAS  Google Scholar 

  21. Bonnet G et al (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci 96(11):6171–6176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rahimi B et al (2021) The secretome of mesenchymal stem cells and oxidative stress: challenges and opportunities in cell-free regenerative medicine. Mol Biol Rep 48(7):5607–5619

    Article  CAS  PubMed  Google Scholar 

  23. Panahi M et al (2020) Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy. J Cell Physiol 235(10):6462–6495

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y et al (2013) 3D super-resolution imaging with blinking quantum dots. Nano Lett 13(11):5233–5241

    Article  CAS  PubMed  Google Scholar 

  25. Xu J, Tehrani KF, Kner P (2015) Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy. ACS Nano 9(3):2917–2925

    Article  CAS  PubMed  Google Scholar 

  26. Dertinger T et al (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci 106(52):22287–22292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaiswal JK et al (2004) Use of quantum dots for live cell imaging. Nat Methods 1(1):73–78

    Article  PubMed  Google Scholar 

  28. Rezaei Z, Ranjbar B (2017) Ultra-sensitive, rapid gold nanoparticle-quantum dot plexcitonic self-assembled aptamer-based nanobiosensor for the detection of human cardiac troponin I. Eng Life Sci 17(2):165–174

    Article  CAS  PubMed  Google Scholar 

  29. Ardekani LS et al (2019) Design and fabrication of a silver nanocluster-based aptasensor for lysozyme detection. Plasmonics 14(6):1765–1774

    Article  CAS  Google Scholar 

  30. Verma NC et al (2021) Emergence of carbon nanodots as a probe for super-resolution microscopy. J Phys Chem C 125(3):1637–1653

    Article  CAS  Google Scholar 

  31. Hou J et al (2016) Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale 8(21):11185–11193

    Article  CAS  PubMed  Google Scholar 

  32. Xu Q et al (2015) Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection. J Mater Chem A 3(2):542–546

    Article  CAS  Google Scholar 

  33. Zhu S et al (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8(2):355–381

    Article  CAS  Google Scholar 

  34. Zhao P, Zhu L (2018) Dispersibility of carbon dots in aqueous and/or organic solvents. Chem Commun 54(43):5401–5406

    Article  CAS  Google Scholar 

  35. Liu D et al (2015) Generalized one-pot strategy enabling different surface functionalizations of carbon nanodots to produce dual emissions in alcohol–water binary systems. J Phys Chem C 119(31):17979–17987

    Article  CAS  Google Scholar 

  36. Hallaji, Z., et al 2021 Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine applications: a review. FlatChem 100271

  37. Bagheri Z et al (2018) Investigation the cytotoxicity and photo-induced toxicity of carbon dot on yeast cell. Ecotoxicol Environ Saf 161:245–250

    Article  CAS  PubMed  Google Scholar 

  38. Bagheri Z et al (2018) On-chip analysis of carbon dots effect on yeast replicative lifespan. Anal Chim Acta 1033:119–127

    Article  CAS  PubMed  Google Scholar 

  39. Jiang K et al (2015) Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem 127(18):5450–5453

    Article  Google Scholar 

  40. Yao Z et al (2019) Full-color emissive carbon-dots targeting cell walls of onion for in situ imaging of heavy metal pollution. Analyst 144(11):3685–3690

    Article  CAS  PubMed  Google Scholar 

  41. Singh V et al (2018) Biocompatible fluorescent carbon quantum dots prepared from beetroot extract for in vivo live imaging in C elegans and BALB/c mice. J Mater Chem B 6(20):3366–3371

    Article  CAS  PubMed  Google Scholar 

  42. Zhi B et al (2018) Malic acid carbon dots: from super-resolution live-cell imaging to highly efficient separation. ACS Nano 12(6):5741–5752

    Article  CAS  PubMed  Google Scholar 

  43. Nandi, S., et al., Lipid-bilayer dynamics probed by a carbon dot-phospholipid conjugate. Biophysical journal, 2016. 110(9).

  44. Du F et al (2015) Multicolor nitrogen-doped carbon dots for live cell imaging. J Biomed Nanotechnol 11(5):780–788

    Article  CAS  PubMed  Google Scholar 

  45. Wu L et al (2017) Morpholine derivative-functionalized carbon dots-based fluorescent probe for highly selective lysosomal imaging in living cells. ACS Appl Mater Interfaces 9(34):28222–28232

    Article  CAS  PubMed  Google Scholar 

  46. Zhang QQ et al (2018) A functional preservation strategy for the production of highly photoluminescent emerald carbon dots for lysosome targeting and lysosomal pH imaging. Nanoscale 10(30):14705–14711

    Article  CAS  PubMed  Google Scholar 

  47. Kang Y-F et al (2015) Nucleus-staining with biomolecule-mimicking nitrogen-doped carbon dots prepared by a fast neutralization heat strategy. Chem Commun 51(95):16956–16959

    Article  CAS  Google Scholar 

  48. Jung YK, Shin E, Kim B-S (2015) Cell nucleus-targeting zwitterionic carbon dots. Sci Rep 5(1):1–9

    Article  CAS  Google Scholar 

  49. Bagheri Z et al (2017) New insight into the concept of carbonization degree in synthesis of carbon dots to achieve facile smartphone based sensing platform. Sci Rep 7(1):1–11

    Article  Google Scholar 

  50. Li H et al (2020) Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons 5(2):218–234

    Article  CAS  Google Scholar 

  51. Zhang X et al (2021) Advances in organelle-targeting carbon dots. Fullerenes, Nanotubes, Carbon Nanostruct 29(5):394–406

    Article  CAS  Google Scholar 

  52. Unnikrishnan B et al (2020) Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega 5(20):11248–11261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo H, Wang L (2021) Recent progress in the development of carbon quantum dots for cell imaging. Oxford Open Materials Science 1(1):itab001

    Article  Google Scholar 

  54. Du J et al (2019) Carbon dots for in vivo bioimaging and theranostics. Small 15(32):1805087

    Article  Google Scholar 

  55. Dalal C et al (2021) Fluorescent carbon nano-onion as bioimaging probe. ACS Appl Bio Mater 4(1):252–266

    Article  CAS  PubMed  Google Scholar 

  56. Wu H et al (2021) Recent advance in carbon dots: from properties to applications. Chin J Chem 39(5):1364–1388

    Article  CAS  Google Scholar 

  57. Ray, P., P. Moitra, and D. Pan 2021 Emerging theranostic applications of carbon dots and its variants. View, 20200089

  58. Zhang, M., et al 2020 When rare earth meets carbon nanodots: mechanisms, applications and outlook. Chemical Society Reviews

  59. Kurian, M. and A. Paul 2021 Recent trends in the use of green sources for carbon dot synthesis—a short review. Carbon Trends 100032

  60. Huo F et al (2020) Preparation and biomedical applications of multicolor carbon dots: recent advances and future challenges. Part Part Syst Charact 37(4):1900489

    Article  Google Scholar 

  61. Tade RS et al (2020) Recent advancement in bio-precursor derived graphene quantum dots: synthesis, characterization and toxicological perspective. Nanotechnology 31(29):292001

    Article  CAS  PubMed  Google Scholar 

  62. Li F, Yang D, Xu H (2019) Non-metal-heteroatom-doped carbon dots: synthesis and properties. Chem-A Eur J 25(5):1165–1176

    Article  CAS  Google Scholar 

  63. Shi, Y., et al 2021 Carbon dots: an innovative luminescent nanomaterial. Aggregate, e108.

  64. Shen C-L et al (2020) Chemiluminescent carbon dots: synthesis, properties, and applications. Nano Today 35:100954

    Article  CAS  Google Scholar 

  65. Sakdaronnarong C et al (2020) Recent developments in synthesis and photocatalytic applications of carbon dots. Catalysts 10(3):320

    Article  CAS  Google Scholar 

  66. Jiang L et al (2020) UV–Vis–NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo. Small 16(19):2000680

    Article  CAS  Google Scholar 

  67. Ding C, Zhu A, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47(1):20–30

    Article  CAS  PubMed  Google Scholar 

  68. Yi, S., et al 2021 Red emissive two-photon carbon dots: photodynamic therapy in combination with real-time dynamic monitoring for the nucleolus. Carbon

  69. Mintz KJ, Zhou Y, Leblanc RM (2019) Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11(11):4634–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu Q et al (2019) Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale 11(4):1475–1504

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y et al (2013) Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chem Commun 49(79):9006–9008

    Article  CAS  Google Scholar 

  72. Basiri H et al (2020) Carbon dots conjugated with vascular endothelial growth factor for protein tracking in angiogenic therapy. Langmuir 36(11):2893–2900

    Article  CAS  PubMed  Google Scholar 

  73. Gavrilyuk S et al (2007) Many-photon dynamics of photobleaching. J Phys Chem A 111(47):11961–11975

    Article  CAS  PubMed  Google Scholar 

  74. Kozák OE et al (2013) Surfactant-derived amphiphilic carbon dots with tunable photoluminescence. J Phys Chem C 117(47):24991–24996

    Article  Google Scholar 

  75. Sharma V et al (2018) Full color emitting fluorescent carbon material as reversible pH sensor with multicolor live cell imaging. J Photochem Photobiol, B 182:137–145

    Article  CAS  Google Scholar 

  76. He H et al (2017) High-density super-resolution localization imaging with blinking carbon dots. Anal Chem 89(21):11831–11838

    Article  CAS  PubMed  Google Scholar 

  77. Gupta A, Nandi CK (2017) PC12 live cell ultrasensitive neurotransmitter signaling using high quantum yield sulphur doped carbon dots and its extracellular Ca2+ ion dependence. Sens Actuators, B Chem 245:137–145

    Article  CAS  Google Scholar 

  78. Miao S, Liang K, Kong B (2020) Förster resonance energy transfer (FRET) paired carbon dot-based complex nanoprobes: versatile platforms for sensing and imaging applications. Mater Chem Front 4(1):128–139

    Article  CAS  Google Scholar 

  79. Kumar A et al (2020) A design of fluorescence-based sensor for the detection of dopamine via FRET as well as live cell imaging. Microchemical Journal 159:105590

    Article  CAS  Google Scholar 

  80. Kozma E, Kele P (2019) Fluorogenic probes for super-resolution microscopy. Org Biomol Chem 17(2):215–233

    Article  CAS  PubMed  Google Scholar 

  81. Hua X-W et al (2019) Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission: high-resolution cell imaging and in vivo tracking. ACS Appl Mater Interfaces 11(36):32647–32658

    Article  CAS  PubMed  Google Scholar 

  82. Park SY et al (2017) Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications. Nanoscale 9(26):9210–9217

    Article  CAS  PubMed  Google Scholar 

  83. Song Y et al (2017) Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells. ACS Appl Mater Interfaces 9(8):7399–7405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao G et al (2018) On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 134:232–243

    Article  CAS  Google Scholar 

  85. Esfandiari N et al (2019) Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon 5(12):e02940

    Article  PubMed  PubMed Central  Google Scholar 

  86. Khajuria DK et al (2017) Fluorescent nanoparticles with tissue-dependent affinity for live zebrafish imaging. ACS Appl Mater Interfaces 9(22):18557–18565

    Article  CAS  PubMed  Google Scholar 

  87. Yang X-C et al (2020) One stone, two birds: pH-and temperature-sensitive nitrogen-doped carbon dots for multiple anticounterfeiting and multiple cell imaging. ACS Appl Mater Interfaces 12(18):20849–20858

    Article  CAS  PubMed  Google Scholar 

  88. Cui Y et al (2015) Simple and efficient synthesis of strongly green fluorescent carbon dots with upconversion property for direct cell imaging. Part Part Syst Charact 32(5):542–546

    Article  CAS  Google Scholar 

  89. Tadesse A et al (2020) Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: green synthesis, mercury (II) ion sensing, and live cell imaging. ACS Omega 5(8):3889–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Singh VK et al (2019) Nitrogen doped fluorescent carbon quantum dots for on-off-on detection of Hg2+ and glutathione in aqueous medium: live cell imaging and IMPLICATION logic gate operation. J Photochem Photobiol A: Chem 384:112042

    Article  CAS  Google Scholar 

  91. Gu D et al (2018) Nitrogen and sulfur co-doped highly luminescent carbon dots for sensitive detection of Cd (II) ions and living cell imaging applications. J Photochem Photobiol, B 186:144–151

    Article  CAS  Google Scholar 

  92. Kumari A et al (2018) Synthesis of green fluorescent carbon quantum dots using waste polyolefins residue for Cu2+ ion sensing and live cell imaging. Sensors and Actuators B: Chemical 254:197–205

    Article  CAS  Google Scholar 

  93. Jana J et al (2016) One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging. Talanta 150:253–264

    Article  CAS  PubMed  Google Scholar 

  94. Fu C, Qian K, Fu A (2017) Arginine-modified carbon dots probe for live cell imaging and sensing by increasing cellular uptake efficiency. Mater Sci Eng, C 76:350–355

    Article  CAS  Google Scholar 

  95. Francis L et al (2020) Utilising magnetically isolated lysosomes for direct quantification of intralysosomal drug concentrations by LC-MS/MS analysis: an investigatory study with imipramine. J Pharm Sci 109(9):2891–2901

    Article  CAS  PubMed  Google Scholar 

  96. Yu F et al (2016) The role of lysosome in cell death regulation. Tumor Biology 37(2):1427–1436

    Article  CAS  PubMed  Google Scholar 

  97. Mohammadi S et al (2021) An experimental investigation on the influence of various buffer concentrations, osmolytes and gold nanoparticles on lysozyme: spectroscopic and calorimetric study. Int J Biol Macromol 172:162–169

    Article  CAS  PubMed  Google Scholar 

  98. Ge W et al (2015) The roles of lysosomes in inflammation and autoimmune diseases. Int Rev Immunol 34(5):415–431

    Article  CAS  PubMed  Google Scholar 

  99. Zhao, Q., S.M. Gao, and M.C. Wang 2020 Molecular mechanisms of lysosome and nucleus communication. Trends in Biochemical Sciences

  100. Fang M et al (2019) Fluorescent probe based on carbon dots/silica/molecularly imprinted polymer for lysozyme detection and cell imaging. Anal Bioanal Chem 411(22):5799–5807

    Article  CAS  PubMed  Google Scholar 

  101. Liu Q et al (2020) Carbon dots for lysosome targeting and imaging of lysosomal pH and Cys/Hcy in living cells. Nanoscale 12(24):13010–13016

    Article  CAS  PubMed  Google Scholar 

  102. Chen, X., X. Zhang, and F.-G. Wu 2021 Ultrasmall green-emitting carbon nanodots with 80% photoluminescence quantum yield for lysosome imaging. Chinese Chemical Letters

  103. Qin H et al (2020) A wash-free lysosome targeting carbon dots for ultrafast imaging and monitoring cell apoptosis status. Anal Chim Acta 1106:207–215

    Article  CAS  PubMed  Google Scholar 

  104. Wang W-J et al (2016) Green preparation of carbon dots for intracellular pH sensing and multicolor live cell imaging. Journal of Materials Chemistry B 4(44):7130–7137

    Article  CAS  PubMed  Google Scholar 

  105. Chang S et al (2020) Label-free chlorine and nitrogen-doped fluorescent carbon dots for target imaging of lysosomes in living cells. Microchim Acta 187(8):1–8

    Article  Google Scholar 

  106. Sun Y et al (2020) Rational design of far-red to near-infrared emitting carbon dots for ultrafast lysosomal polarity imaging. ACS Appl Mater Interfaces 12(28):31738–31744

    Article  CAS  PubMed  Google Scholar 

  107. Tong L et al (2020) One-step fabrication of functional carbon dots with 90% fluorescence quantum yield for long-term lysosome imaging. Anal Chem 92(9):6430–6436

    Article  CAS  PubMed  Google Scholar 

  108. Zhou D et al (2021) Lysosome-targetable selenium-doped carbon nanodots for in situ scavenging free radicals in living cells and mice. Microchim Acta 188(7):1–8

    Article  Google Scholar 

  109. Wang, P., et al 2021 One-pot synthesis of nuclear targeting carbon dots with high photoluminescence. Chinese Chemical Letters

  110. Havrdová M et al (2021) Self-targeting of carbon dots into the cell nucleus: diverse mechanisms of toxicity in NIH/3T3 and L929 cells. Int J Mol Sci 22(11):5608

    Article  PubMed  PubMed Central  Google Scholar 

  111. Datta K et al (2014) Quaternized carbon dot-modified graphene oxide for selective cell labelling–controlled nucleus and cytoplasm imaging. Chem Commun 50(74):10782–10785

    Article  CAS  Google Scholar 

  112. Lu S et al (2016) Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood–brain barrier penetration capabilities. Int J Nanomed 11:6325

    Article  CAS  Google Scholar 

  113. Farley KI et al (2015) Determinants of mammalian nucleolar architecture. Chromosoma 124(3):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Penzo M et al (2019) The ribosome biogenesis—cancer connection. Cells 8(1):55

    Article  CAS  PubMed Central  Google Scholar 

  115. Sen Gupta A, Sengupta K (2017) Lamin B2 modulates nucleolar morphology, dynamics, and function. Mole Cell Biol 37(24):e00274-17

    CAS  Google Scholar 

  116. Stimpson KM et al (2014) Nucleolar organization, ribosomal DNA array stability and acrocentric chromosome integrity are linked to telomere function. PLoS One 9(3):e92432

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lara-Martínez R et al (2016) Morphological studies of nucleologenesis in Giardia lamblia. Anat Rec 299(5):549–556

    Article  Google Scholar 

  118. Cao C et al (2019) Ribosomal RNA-selective light-up fluorescent probe for rapidly imaging the nucleolus in live cells. ACS sensors 4(5):1409–1416

    Article  CAS  PubMed  Google Scholar 

  119. Feng R et al (2017) Turn-on fluorescent probes that can light up endogenous RNA in nucleoli and cytoplasm of living cells under a two-photon microscope. RSC Adv 7(27):16730–16736

    Article  CAS  Google Scholar 

  120. Li H et al (2019) Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Res 12(12):3075–3084

    Article  CAS  Google Scholar 

  121. Liu Y et al (2016) A cyanine dye to probe mitophagy: simultaneous detection of mitochondria and autolysosomes in live cells. J Am Chem Soc 138(38):12368–12374

    Article  CAS  PubMed  Google Scholar 

  122. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gao G et al (2017) Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells. Nanoscale 9(46):18368–18378

    Article  CAS  PubMed  Google Scholar 

  124. Zhao J et al (2020) A multifunctional nanoprobe for targeting tumors and mitochondria with singlet oxygen generation and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging. Chem Sci 11(14):3636–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gong N et al (2019) Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat Nanotechnol 14(4):379–387

    Article  CAS  PubMed  Google Scholar 

  126. Hua X-W et al (2017) Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 9(30):10948–10960

    Article  CAS  PubMed  Google Scholar 

  127. Geng X et al (2019) Retrosynthesis of tunable fluorescent carbon dots for precise long-term mitochondrial tracking. Small 15(48):1901517

    Article  CAS  Google Scholar 

  128. Guo S et al (2020) Fluorescent carbon dots shuttling between mitochondria and the nucleolus for in situ visualization of cell viability. ACS Appl Bio Mater 4(1):928–934

    Article  Google Scholar 

  129. Almanza A et al (2019) Endoplasmic reticulum stress signalling—from basic mechanisms to clinical applications. FEBS J 286(2):241–278

    Article  CAS  PubMed  Google Scholar 

  130. Yoshida H (2007) ER stress and diseases. FEBS J 274(3):630–658

    Article  CAS  PubMed  Google Scholar 

  131. Shuang E et al (2021) Correction: Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity. Nanoscale 13(5):3307–3307

    Article  Google Scholar 

  132. Ohsaki Y, Suzuki M, Fujimoto T (2014) Open questions in lipid droplet biology. Chem Biol 21(1):86–96

    Article  CAS  PubMed  Google Scholar 

  133. Onal G et al (2017) Lipid droplets in health and disease. Lipids Health Dis 16(1):1–15

    Article  Google Scholar 

  134. Liu M-X et al (2021) One-step synthesis of carbon nanoparticles capable of long-term tracking lipid droplet for real-time monitoring of lipid catabolism and pharmacodynamic evaluation of lipid-lowering drugs. Anal Chem 93(12):5284–5290

    Article  CAS  PubMed  Google Scholar 

  135. Wang, J., et al 2021 Quantitative structure–activity relationship enables the rational design of lipid droplet-targeting carbon dots for visualizing bisphenol A-induced nonalcoholic fatty liver disease-like changes. ACS Applied Materials & Interfaces

  136. Zhuang Q et al (2020) A self-adaptive multi-color fluorescent pH probe with the ability of whole cell imaging. Talanta 208:119780

    Article  CAS  PubMed  Google Scholar 

  137. Lesani, P., et al 2021 Two-photon ratiometric carbon dot-based probe for real-time intracellular pH monitoring in 3D environment. Chemical Engineering Journal 133668

  138. Yang Z et al (2013) Fluorescent pH sensor constructed from a heteroatom-containing luminogen with tunable AIE and ICT characteristics. Chem Sci 4(9):3725–3730

    Article  CAS  Google Scholar 

  139. Feng Y et al (2014) New fluorescent pH sensor based on label-free silicon nanodots. Sens Actuators, B Chem 203:795–801

    Article  CAS  Google Scholar 

  140. Xiaoqing L et al (2015) Ultra sensitive and wide-range pH sensor based on the BSA-capped Cu nanoclusters fabricated by fast synthesis through the use of hydrogen peroxide additive. RSC Adv 5(60):48835–48841

    Article  Google Scholar 

  141. Liu C et al (2021) A mini review on pH-sensitive photoluminescence in carbon nanodots. Front Chem 8:1242

    Article  Google Scholar 

  142. Wang Q et al (2019) Strong acid-assisted preparation of green-emissive carbon dots for fluorometric imaging of pH variation in living cells. Microchim Acta 186(7):1–9

    Article  Google Scholar 

  143. Wang N et al (2018) Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl Mater Interfaces 10(9):7901–7909

    Article  CAS  PubMed  Google Scholar 

  144. Shi B et al (2016) Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications. Biosens Bioelectron 82:233–239

    Article  CAS  PubMed  Google Scholar 

  145. Ehtesabi H et al (2020) Carbon dots with pH-responsive fluorescence: a review on synthesis and cell biological applications. Microchim Acta 187(2):1–18

    Article  Google Scholar 

  146. Bagheri Z et al (2015) Spectral properties and thermal stability of AS1411 G-quadruplex. Int J Biol Macromol 72:806–811

    Article  CAS  PubMed  Google Scholar 

  147. Rasekh B et al (2014) Protein engineering of laccase to enhance its activity and stability in the presence of organic solvents. Eng Life Sci 14(4):442–448

    Article  CAS  Google Scholar 

  148. Kumar A et al (2017) Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens Actuators, B Chem 242:679–686

    Article  CAS  Google Scholar 

  149. Yang S et al (2018) Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion. Nano Res 11(3):1369–1378

    Article  CAS  Google Scholar 

  150. Singh AK et al (2019) One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. J Photochem Photobiol, A 376:63–72

    Article  CAS  Google Scholar 

  151. Batool, M., et al 2020 Metal ion detection by carbon dots—a review. Critical Reviews in Analytical Chemistry, 1–12

  152. Du F et al (2020) Facile synthesis of ultrahigh fluorescence N, S-self-doped carbon nanodots and their multiple applications for H 2 S sensing, bioimaging in live cells and zebrafish, and anti-counterfeiting. Nanoscale 12(39):20482–20490

    Article  CAS  PubMed  Google Scholar 

  153. Liang C et al (2021) Biomass carbon dots derived from Wedelia trilobata for the direct detection of glutathione and their imaging application in living cells. Journal of Materials Chemistry B 9(28):5670–5681

    Article  CAS  PubMed  Google Scholar 

  154. Pang L-F et al (2021) Cell membrane-targeted near-infrared carbon dots for imaging of hydrogen sulfide released through the cell membrane. Sensors and Actuators B: Chemical 345:130403

    Article  CAS  Google Scholar 

  155. Ren G et al (2020) Efficient preparation of nitrogen-doped fluorescent carbon dots for highly sensitive detection of metronidazole and live cell imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 234:118251

    Article  CAS  Google Scholar 

  156. Sun J et al (2019) 2, 4-Dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging of biothiols in living cells. Microchim Acta 186(7):1–9

    Article  Google Scholar 

  157. Deng Z et al (2020) A nanoprobe for ratiometric imaging of glutathione in living cells based on the use of a nanocomposite prepared from dual-emission carbon dots and manganese dioxide nanosheets. Microchim Acta 187(9):1–10

    Article  Google Scholar 

  158. Wang, Q., et al 2021 Nonblinking carbon dots for imaging and tracking receptors on a live cell membrane. Chemical Communications

  159. Wang, G.-G., et al 2021 Carbon dots-based red fluorescence nanoprobe for caspase-1 activity assay and living cell imaging. Sensors and Actuators B: Chemical 130285

  160. Wang J et al (2015) High performance photoluminescent carbon dots for in vitro and in vivo bioimaging: effect of nitrogen doping ratios. Langmuir 31(29):8063–8073

    Article  CAS  PubMed  Google Scholar 

  161. Tang J et al (2013) Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv Mater 25(45):6569–6574

    Article  CAS  PubMed  Google Scholar 

  162. Ermis, E., et al 2021 Red emissive NS co-doped carbon dots for live imaging of tumor spheroid in the microfluidic device. Journal of Science: Advanced Materials and Devices

  163. Hu J et al (2021) Spying on the polarity dynamics during wound healing of zebrafish by using rationally designed carbon dots. Adv Healthcare Mater 10(14):2002268

    Article  CAS  Google Scholar 

  164. Rodrigues CV et al (2015) Down-and up-conversion photoluminescence of carbon-dots from brewing industry waste: application in live cell-imaging experiments. J Braz Chem Soc 26:2623–2628

    CAS  Google Scholar 

  165. Yu C et al (2013) Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 49(4):403–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeinab Bagheri or Bijan Ranjbar.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallaji, Z., Bagheri, Z., Oroujlo, M. et al. An insight into the potentials of carbon dots for in vitro live-cell imaging: recent progress, challenges, and prospects. Microchim Acta 189, 190 (2022). https://doi.org/10.1007/s00604-022-05259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05259-9

Keywords

Navigation