Skip to main content
Log in

Layer-by-layer assembly of multilayered double hydroxides/polyoxometalate-coated magnetic nanoparticles for highly efficient phosphopeptide enrichment

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A layer-by-layer (LbL) assembly strategy was developed to prepare multilayered double hydroxide/polyoxometalate shell–coated magnetic nanoparticles. The introduction of functional shells not only offered abundant affinity sites of metal oxide and metal ions but also increased the surface area for the contact with targets. By combining the enrichment strategies of immobilized metal ion affinity chromatography and metal oxide affinity chromatography, the nanomaterial can capture phosphopeptides via a synergistic effect. The method presented a low detection limit of 0.1 fmol in combination with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. The nanomaterial showed satisfactory selectivity (1:1:5000 M ratio of α--casein/bovine serum albumin), good recovery (92.07%), high adsorption capacity (117.6 mg g−1), and ten times reusability for capturing phosphopeptides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arabi M, Ostovan A, Zhang ZY, Wang YQ, Mei RC, Fu LW, Wang XY, Ma JP, Chen LX (2021) Label-free SERS detection of Raman-inactive protein biomarkers by Raman reporter indicator: toward ultrasensitivity and universality. Biosens Bioelectron 174:112825

    Article  CAS  Google Scholar 

  2. Arabi M, Ostovan A, Bagheri AR, Guo XT, Wang LY, Li JH, Wang XY, Li BW, Chen LX (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trac-Trend Anal Chem 128:115923

    Article  CAS  Google Scholar 

  3. Arabi M, Ostovan A, Li JH, Wang XY, Zhang ZY, Choo J, Chen LX (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33:2100543

    Article  CAS  Google Scholar 

  4. Jabeen F, Najam-ul-Haq M, Rainer M, Huck CW, Bonn GK (2017) In-tip lanthanum oxide monolith for the enrichment of phosphorylated biomolecules. Anal Chem 89:10232–10238

    Article  CAS  Google Scholar 

  5. Li N, Zhang L, Shi HL, Li JR, Zhang J, Zhang ZQ, Dang FQ (2020) Specific enrichment of phosphopeptides by using magnetic nanocomposites of type Fe3O4@graphene oxide and Fe3O4@C coated with self-assembled oligopeptides. Microchim Acta 2:187–196

    Google Scholar 

  6. He XM, Chen X, Yuan BF, Feng YQ (2017) Graft modification of cotton with phosphate group and its application to the enrichment of phosphopeptides. J Chromatogr A 1484:49–57

    Article  CAS  Google Scholar 

  7. Yi L, Shi TJ, Gritsenko MA, X’avia Chan CY, Fillmore TL, Hess BM, Swensen AC, Liu T, Smith RD, Wiley HS, Qian WJ (2018) Targeted quantification of phosphorylation dynamics in the context of EGFR-MAPK pathway. Anal Chem 90:5256–5263

    Article  CAS  Google Scholar 

  8. Ali MM, Zhu ZY, Hussain D, Shen ZC, He YT, Du ZX (2021) Flexible and hierarchical metal-organic framework composite as solid-phase media for facile affinity-tip fabrication to selectively enrich glycopeptides and phosphopeptides. Talanta 233:122576

    Article  CAS  Google Scholar 

  9. Incel A, Diez IA, Wierzbicka C, Gajoch K, Jensen ON, Sellergren B (2021) Selective enrichment of histidine phosphorylated peptides using molecularly imprinted polymers. Anal Chem 93:3857–3866

    Article  CAS  Google Scholar 

  10. Chen LJ, Humphrey SJ, Zhu JL, Zhu FF, Wang XQ, Wang X, Wen J, Yang HB, Gale PA (2021) A two-dimensional metallacycle cross-linked switchable polymer for fast and highly efficient phosphorylated peptide enrichment. J Am Chem Soc 143:8295–8304

    Article  CAS  Google Scholar 

  11. Li JY, Zhang S, Gao W, Hua Y, Lian HZ (2020) Guanidyl-functionalized magnetic bimetallic MOF nanocomposites developed for selective enrichment of phosphopeptides. ACS Sustain Chem Eng 8:16422–16429

    Article  CAS  Google Scholar 

  12. Cui YS, Tabang DN, Zhang ZS, Ma MJ, Alpert A, Li LJ (2021) Counterion optimization dramatically improves selectivity for phosphopeptides and glycopeptides in electrostatic repulsionhydrophilic interaction chromatography. Anal Chem 93:7908–7916

    Article  CAS  Google Scholar 

  13. Luo B, Yan S, Zhang YJ, Zhou J, Lan F, Wu Y (2021) Bifunctional magnetic covalent organic framework for simultaneous enrichment of phosphopeptides and glycopeptides. Anal Chim Acta 1107:338761

    Article  Google Scholar 

  14. Huang JF, Liu XY, Wang DQ, Cui YS, Shi XD, Dong J, Ye ML, Li LJ (2021) Dual-functional Ti(IV)-IMAC material enables simultaneous enrichment and separation of diverse glycopeptides and phosphopeptides. Anal Chem 93:8568–8576

    Article  CAS  Google Scholar 

  15. Choy JH, Kwak SY, Jeong YJ, Park JS (2000) Inorganic layered double hydroxides as nonviral vectors. Angew Chem Int Ed 39:4041–4045

    Article  CAS  Google Scholar 

  16. Khan AI, O’Hare D (2002) Intercalation chemistry of layered double hydroxides: recent developments and applications. J Mater Chem 12:3191–3198

    Article  CAS  Google Scholar 

  17. Jiang DD, Duan LM, Jia Q, Liu JH (2020) Glycocyamine functionalized magnetic layered double hydroxides with multiple affinity sites for trace phosphopeptides enrichment. Anal Chim Acta 1136:25–33

    Article  CAS  Google Scholar 

  18. Leon MC, Coronado E, Delhaes P, Gomez-Garcia CJ, Mingotaud C (2001) Hybrid Langmuir-Blodgett films formed by alternating layers of magnetic polyoxometalate clusters and organic donor molecules-towards the preparation of multifunctional molecular materials. Adv Mater 13:574–577

    Article  Google Scholar 

  19. Nisar A, Lu Y, Zhuang J, Wang X (2011) Polyoxometalate nanocone nanoreactors: magnetic manipulation and enhanced catalytic performance. Angew Chem Int Ed 50:3187–3192

    Article  CAS  Google Scholar 

  20. John Errington R, Petkar SS, Horrocks BR, Houlton A, Lie LH, Patole SN (2005) Covalent immobilization of a TiW5 polyoxometalate on derivatized silicon surfaces. Angew Chem Int Ed 44:1254–1257

    Article  Google Scholar 

  21. Lopez X, Maestre JM, Bo C, Poblet JM (2001) Electronic properties of polyoxometalates: a DFT study of α/β-[XM12O40]n– relative stability (M=W, Mo and X a main group element). J Am Chem Soc 123:9571–9576

    Article  CAS  Google Scholar 

  22. Samanta A, Ravoo BJ (2014) Magnetic separation of proteins by a self-assembled supramolecular ternary complex. Angew Chem Int Ed 53:12946–12950

    Article  CAS  Google Scholar 

  23. Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Levy M, Bacri JC, Bazzi R, Brougham DF, Wilhelm C, Gazeau F (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949

    Article  CAS  Google Scholar 

  24. Djaballah R, Bentouami A, Benhamou A, Boury B, Elandaloussi EH (2018) The use of Zn-Ti layered double hydroxide interlayer spacing property for low-loading drug and low-dose therapy. Synthesis, characterization and release kinetics study. J Alloys Compd 739:559–567

    Article  CAS  Google Scholar 

  25. Liu SM, Zhang Z, Li XH, Jia HJ, Liu SX (2018) Synthesis and photophysical properties of crystalline [EuW10O36]9–based polyoxometalates with lanthanide ions as counter cations. J Alloys Compd 761:52–57

    Article  CAS  Google Scholar 

  26. Qi H, Li Z, Zheng HJ, Jia Q (2021) Carnosine functionalized magnetic metal-organic framework nanocomposites for synergistic enrichment of phosphopeptides. Anal Chim Acta 1157:338383

    Article  CAS  Google Scholar 

  27. Li ZY, Quan HJ, Gong CB, Yang YZ, Tang Q, Wei YB, Ma XB, Lam HW (2015) Photocontrolled solid-phase extraction of guanine from complex samples using a novel photoresponsive molecularly imprinted polymer. Food Chem 172:56–62

    Article  CAS  Google Scholar 

  28. Wang Y, Wang EL, Wu ZM, Li H, Zhu Z, Zhu XS (2014) Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone. Carbohydr Polym 101:517–523

    Article  CAS  Google Scholar 

  29. Sun HF, Zhang QQ, Zhang L, Zhang WB, Zhang LY (2017) Facile preparation of molybdenum (VI) oxide-modified graphene oxide nanocomposite for specific enrichment of phosphopeptides. J Chromatogr A 1521:36–43

    Article  CAS  Google Scholar 

  30. Liu B, Wang BC, Yan YH, Tang KQ, Ding CF (2021) Efficient separation of phosphopeptides employing a Ti/Nb-functionalized core-shell structure solid-phase extraction nanosphere. Microchim Acta 188:32–42

    Article  CAS  Google Scholar 

  31. He YT, Zheng Q, Lin Z (2021) Ti4+-immobilized hierarchically porous zirconium-organic frameworks for highly efficient enrichment of phosphopeptides. Microchim Acta 188:150–160

    Article  CAS  Google Scholar 

  32. Omwoma S, Chen W, Tsunashima R, Song YF (2013) Recent advances on polyoxometalates intercalated layered double hydroxides: from synthetic approaches to functional material applications. Coordin Chem Rev 258:58–71

    Google Scholar 

  33. Chen XQ, Li SY, Zhang XX, Min QH, Zhu JJ (2015) Weaving a two-dimensional fishing net from titanoniobate nanosheets embedded with Fe3O4 nanocrystals for highly efficient capture and isotope labeling of phosphopeptides. Nanoscale 7:5815–5825

    Article  CAS  Google Scholar 

  34. Fiorani G, Saoncella O, Kaner P, Altinkaya SA, Figoli A, Bonchio M, Carraro M (2014) Chitosan-polyoxometalate nanocomposites: synthesis, characterization and application as antimicrobial agents. J Clust Sci 25:839–854

    Article  CAS  Google Scholar 

  35. Shen YL, Yin KJ, An CH, Xiao ZH (2018) Design of a difunctional Zn-Ti LDHs supported PdAu catalyst for selective hydrogenation of phenylacetylene. Appl Surf Sci 456:1–6

    Article  CAS  Google Scholar 

  36. Zhao YM, Zhang LY, Chu ZY, Xiong ZC, Zhang WB (2017) Ti4+-immobilized chitosan-coated magnetic graphene oxide for the highly selective enrichment of phosphopeptides. Anal Methods 9:443–449

    Article  CAS  Google Scholar 

  37. Xiong ZC, Zhang LY, Fang CL, Zhang QQ, Ji YS, Zhang Z, Zhang WB, Zou HF (2014) Ti4+-immobilized multilayer polysaccharide coated magnetic nanoparticles for highly selective enrichment of phosphopeptides. J Mater Chem B 2:4473–4480

    Article  CAS  Google Scholar 

  38. Hong YY, Zhan QL, Pu CL, Sheng QY, Zhao HL, Lan MB (2018) Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles. Talanta 187:223–230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (22004073, 21961024 and 21961025), Natural Science Foundation of Inner Mongolia (2020BS02010 and 2020BS02015), Talent Research Support Funds from Government-Sponsored Institution of Inner Mongolia (RCQD19002), Inner Mongolia Minzu University Doctoral Research Startup Fund Project (BS516 and BS513), and Incentive Funding from Nano Innovation Institute (NII) of Inner Mongolia Minzu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 979 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Lv, S., Qi, R. et al. Layer-by-layer assembly of multilayered double hydroxides/polyoxometalate-coated magnetic nanoparticles for highly efficient phosphopeptide enrichment. Microchim Acta 189, 156 (2022). https://doi.org/10.1007/s00604-022-05258-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05258-w

Keywords

Navigation