Skip to main content
Log in

A competitive immunoassay for detecting triazophos based on fluorescent catalytic hairpin self-assembly

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

A Correction to this article was published on 24 May 2022

This article has been updated

Abstract

A rapid detection method is introduced for residual trace levels of triazophos in water and agricultural products using an immunoassay based on catalytic hairpin self-assembly (CHA). The gold nanoparticle (AuNPs) surface was modified with triazophos antibody and sulfhydryl bio-barcode, and an immune competition reaction system was established between triazophos and its ovalbumin-hapten (OVA-hapten). The bio-barcode served as a catalyst to continuously induce the CHA reaction to achieve the dual signal amplification. The method does not rely on the participation of enzymes, and the addition of fluorescent materials in the last step avoids interfering factors, such as a fluorescence burst. The emitted fluorescence was detected at 489/521 nm excitation/emission wavelengths. The detection range of the developed method was 0.01–50 ng/mL for triazophos, and the limit of detection (LOD) was 0.0048 ng/mL. The developed method correlates well with the results obtained by LC–MS/MS, with satisfactory recovery and sensitivity. In sum, the designed method is reliable and provides a new approach to detect pesticide residues rapidly and quantitatively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2

modified by nanogold using colorimetric and UV spectrophotometric methods

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Bhandari G, Zomer P, Atreya K, Mol HGJ, Yang X, Geissen V (2019) Pesticide residues in Nepalese vegetables and potential health risks. Environ Res 172:511–521. https://doi.org/10.1016/j.envres.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  2. Agüera A, Contreras M, Fernandez-Alba AR (1993) Gas chromatographic analysis of organophosphorus pesticides of horticultural concern. J Chromatogr A 655(2):293–300. https://doi.org/10.1016/0021-9673(93)83235-K

    Article  Google Scholar 

  3. Arias PG, Martínez-Pérez-Cejuela H, Combès A, Pichon V, Pereira E, Herrero-Martínez JM, Bravo M (2020) Selective solid-phase extraction of organophosphorus pesticides and their oxon-derivatives from water samples using molecularly imprinted polymer followed by high-performance liquid chromatography with UV detection. J Chromatogr A 1626:461346. https://doi.org/10.1016/j.chroma.2020.461346

    Article  CAS  PubMed  Google Scholar 

  4. Harischandra NR, Pallavi MS, Bheemanna M, PavanKumar K, Chandra Sekhara Reddy V, Udaykumar NR, Paramasivam M, Yadav S (2021) Simultaneous determination of 79 pesticides in pigeonpea grains using GC–MS/MS and LC–MS/MS. Food Chem 347:128986. https://doi.org/10.1016/j.foodchem.2020.128986

    Article  CAS  PubMed  Google Scholar 

  5. Acosta-Dacal A, Rial-Berriel C, Díaz-Díaz R, Bernal-Suárez MdM, Luzardo OP (2021) Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci Total Environ 753:142015. https://doi.org/10.1016/j.scitotenv.2020.142015

    Article  CAS  PubMed  Google Scholar 

  6. Noh HH, Kim CJ, Kwon H, Kim D, Moon BC, Baek S, Oh MS, Kyung KS (2020) Optimized residue analysis method for broflanilide and its metabolites in agricultural produce using the QuEChERS method and LC-MS/MS. Plos One 15(10):e0235526. https://doi.org/10.1371/journal.pone.0235526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pogačnik L, Franko M (2001) Optimisation of FIA system for detection of organophosphorus and carbamate pesticides based on cholinesterase inhibition. Talanta 54(4):631–641. https://doi.org/10.1016/S0039-9140(01)00314-9

    Article  PubMed  Google Scholar 

  8. Xu Z, Dong J, Yang J, Wang H, Jiang Y, Lei H, Shen Y, Sun Y (2012) Development of a sensitive time-resolved fluoroimmunoassay for organophosphorus pesticides in environmental water samples. Anal Methods 4(10):3484. https://doi.org/10.1039/c2ay25534k

    Article  CAS  Google Scholar 

  9. Yu G, Wu W, Zhao Q, Wei X, Lu Q (2015) Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens Bioelectron 68:288–294. https://doi.org/10.1016/j.bios.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  10. Karczmarczyk A, Baeumner AJ, Feller K-H (2017) Rapid and sensitive inhibition-based assay for the electrochemical detection of Ochratoxin A and Aflatoxin M1 in red wine and milk. Electrochim Acta 243:82–89. https://doi.org/10.1016/j.electacta.2017.05.046

    Article  CAS  Google Scholar 

  11. Liu B, Gong H, Wang Y, Zhang X, Li P, Qiu Y, Wang L, Hua X, Guo Y, Wang M (2018) A gold immunochromatographic assay for simultaneous detection of parathion and triazophos in agricultural products. Anal Methods 10:422–428. https://doi.org/10.1039/C7AY02481A

    Article  CAS  Google Scholar 

  12. Nam JM (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886. https://doi.org/10.1126/science.1088755

    Article  CAS  PubMed  Google Scholar 

  13. Sedighi A, Krull UJ (2019) Enhanced immunoassay using a rotating paper platform for quantitative determination of low abundance protein biomarkers. Anal Chem 91(8):5371–5379. https://doi.org/10.1021/acs.analchem.9b00502

    Article  CAS  PubMed  Google Scholar 

  14. Wang Q, Su J, Xu J, Xiang Y, Yuan R, Chai Y (2012) Dual amplified, sensitive electrochemical detection of pathogenic sequences based on biobarcode labels and functional graphene modified electrode. Sens Actuators B 163(1):267–271. https://doi.org/10.1016/j.snb.2012.01.050

    Article  CAS  Google Scholar 

  15. Broto M, Salvador JP, Galve R, Marco MP (2018) Biobarcode assay for the oral anticoagulant acenocoumarol. Talanta 178:308–314. https://doi.org/10.1016/j.talanta.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  16. Guan N, Li Y, Yang H, Hu P, Lu S, Ren H, Liu Z, Soo Park K, Zhou Y (2021) Dual-functionalized gold nanoparticles probe based bio-barcode immuno-PCR for the detection of glyphosate. Food Chem 338:128133. https://doi.org/10.1016/j.foodchem.2020.128133

    Article  CAS  PubMed  Google Scholar 

  17. Du Pengfei MJ, GeChen CZ, Jiang Z, Zhang Y, Zou P, Yongxin She FJ, Shao H, ShanshanWang LufeiZheng, JingWang, (2016) A competitive bio-barcode amplification immunoassay for small molecules based on nanoparticles. Sci Rep 6(1):38114. https://doi.org/10.1038/srep38114

    Article  CAS  Google Scholar 

  18. Cui X, Jin M, Zhang C, Du P, Chen G, Qin G, Jiang Z, Zhang Y, Li M, Liao Y, Wang Y, Cao Z, Yan F, Abd El-Aty AM, Wang J (2019) Enhancing the sensitivity of the bio-barcode immunoassay for triazophos detection based on nanoparticles and droplet digital polymerase chain reaction. J Agric Food Chem 67(46):12936–12944. https://doi.org/10.1021/acs.jafc.9b05147

    Article  CAS  PubMed  Google Scholar 

  19. Du P, Jin M, Zhang C, Chen G, Cui X, Zhang Y, Zhang Y, Zou P, Jiang Z, Cao X, She Y, Jin F, Wang J (2018) Highly sensitive detection of triazophos pesticide using a novel bio-bar-code amplification competitive immunoassay in a micro well plate-based platform. Sens Actuators B 256:457–464. https://doi.org/10.1016/j.snb.2017.10.075

    Article  CAS  Google Scholar 

  20. Zhang C, Jiang Z, Jin M, Du P, Chen G, Cui X, Zhang Y, Qin G, Yan F, Abd El-Aty AM, Hacimüftüoğlu A, Wang J (2020) Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food Chem 326:126813. https://doi.org/10.1016/j.foodchem.2020.126813

    Article  CAS  PubMed  Google Scholar 

  21. Liu S, Wang Y, Ming J, Lin Y, Cheng C, Li F (2013) Enzyme-free and ultrasensitive electrochemical detection of nucleic acids by target catalyzed hairpin assembly followed with hybridization chain reaction. Biosens Bioelectron 49:472–477. https://doi.org/10.1016/j.bios.2013.05.037

    Article  CAS  PubMed  Google Scholar 

  22. Zhang M, Huo B, Yuan S, Ning B, Bai J, Peng Y, Liu B, Gao Z (2018) Ultrasensitive detection of T-2 toxin in food based on bio-barcode and rolling circle amplification. Anal Chim Acta 1043:98–106. https://doi.org/10.1016/j.aca.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  23. Sukphattanaudomchoke C, Siripattanapipong S, Thita T, Leelayoova S, Piyaraj P, Mungthin M, Ruang-areerate T (2020) Simplified closed tube loop mediated isothermal amplification (LAMP) assay for visual diagnosis of Leishmania infection. Acta Trop 212:105651. https://doi.org/10.1016/j.actatropica.2020.105651

    Article  CAS  PubMed  Google Scholar 

  24. Cui Y, Fan S, Yuan Z, Song M, Hu J, Qian D, Zhen D, Li J, Zhu B (2021) Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta 224:121878. https://doi.org/10.1016/j.talanta.2020.121878

    Article  CAS  PubMed  Google Scholar 

  25. Chen R, Sun Y, Huo B, Yuan S, Sun X, Zhang M, Yin N, Fan L, Yao W, Wang J, Han D, Li S, Peng Y, Bai J, Ning B, Liang J, Gao Z (2020) Highly sensitive detection of ochratoxin A based on bio-barcode immunoassay and catalytic hairpin assembly signal amplification. Talanta 208:120405. https://doi.org/10.1016/j.talanta.2019.120405

    Article  CAS  PubMed  Google Scholar 

  26. MOA, 2021. National food safety standard—maximum residue limits for pesticides in food. GB 2763–2021. Beijing, China.

  27. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431. https://doi.org/10.1093/jaoac/86.2.412

    Article  CAS  PubMed  Google Scholar 

  28. Ma S, He J, Guo M, Sun X, Zheng M, Wang Y (2018) Ultrasensitive colorimetric detection of triazophos based on the aggregation of silver nanoparticles. Colloids Surf, A 538:343–349. https://doi.org/10.1016/j.colsurfa.2017.11.030

    Article  CAS  Google Scholar 

  29. Ma Y, Zhao Y, Xu X, Ding S, Li Y (2021) Magnetic covalent organic framework immobilized gold nanoparticles with high-efficiency catalytic performance for chemiluminescent detection of pesticide triazophos. Talanta 235:122798. https://doi.org/10.1016/j.talanta.2021.122798

    Article  CAS  PubMed  Google Scholar 

  30. Wu M, Fan Y, Li J, Lu D, Guo Y, Xie L, Wu Y (2019) Vinyl phosphate-functionalized, magnetic, molecularly-imprinted polymeric microspheres’ enrichment and carbon dots’ fluorescence-detection of organophosphorus pesticide residues. Polymers 11(11):1770. https://doi.org/10.3390/polym11111770

    Article  CAS  PubMed Central  Google Scholar 

  31. Zhang C, Du P, Jiang Z, Jin M, Chen G, Cao X, Cui X, Zhang Y, Li R, Abd El-Aty AM, Wang J (2018) A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Anal Chim Acta 999:123–131. https://doi.org/10.1016/j.aca.2017.10.032

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research Program of China (No. 2019YFC1604503), NIEHS Superfund Research Program (No. P42 ES04699), Agricultural Science and Technology Innovation Program of CAAS (No. CAAS-ZDRW202011), and Ningbo Innovation Project for Agro-Products Quality and Safety (No. 2019CXGC007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maojun Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original version of this article, the given name and family name of “AM Abd El-Aty” were incorrectly structured.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1836 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Abd El-Aty, A.M., Chen, G. et al. A competitive immunoassay for detecting triazophos based on fluorescent catalytic hairpin self-assembly. Microchim Acta 189, 114 (2022). https://doi.org/10.1007/s00604-022-05217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05217-5

Keywords

Navigation