Skip to main content
Log in

Development of a pulse-induced electrochemical biosensor based on gluconamide for Gram-negative bacteria detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Pathogenic bacteria can cause the outbreaks of disease and threaten human health, which stimulates the development of advanced detection techniques. Herein, a specific and sensitive electrochemical biosensor for Gram-negative bacteria was established based on the conductive polymer with artificial muscle properties.  The effective recognition was achieved through the specific carbohydrate-carbohydrate interaction between gluconamide and lipopolysaccharide.  The application of impulse voltage enhances the efficiency of recognition and shortens the detection time through the temporary deformation of the electrode surface, with a limit of detection (LOD)  of 1 × 100 CFU/mL and a linear range of 1 × 100 − 1 × 106 CFU/mL for Escherichia coli (E. coli). In addition  to the merits of low cost, high efficiency, and rapidity,  the developed label-free electrochemical biosensor can also be applicable for other Gram-negative bacteria, owning promising potential in the application of portable devices and paving a potential way for the construction of electrochemical biosensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Imai Y, Meyer KJ, Iinishi A, Favre−Godal Q, Green R, Manuse S, Caboni M, Mori M, Niles S, Ghiglieri M, Honrao C, Ma XY, Guo JJ, Makriyannis A, Linares−Otoya L, Bohringer N, Wuisan ZG, Kaur H, Wu RR, Mateus A, Typas A, Savitski MM, Espinoza JL, O’Rourke A, Nelson KE, Hiller S, Noinaj N, Schaberle TF, D’Onofrio A, Lewis K, (2020) A new antibiotic selectively kills Gram-negative pathogens. Nature 580:E3–E3

    Article  CAS  Google Scholar 

  2. Oh JM, Venters CC, Di C, Pinto AM, Wan LL, Younis I, Cai ZQ, Arai C, So BR, Duan JQ, Dreyfuss G (2020) U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun 11:1

    Article  CAS  Google Scholar 

  3. Denamur E, Clermont O, Bonacorsi S, Gordon D (2021) The population genetics of pathogenic Escherichia coli. Nat Rev Microbiol 19:37–54

    Article  CAS  Google Scholar 

  4. Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26–38

    Article  CAS  Google Scholar 

  5. Furst AL, Francis MB (2018) Impedance-based detection of bacteria. Chem Rev 119:700–726

    Article  Google Scholar 

  6. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340

    Article  CAS  Google Scholar 

  7. Chen F, Kim S, Na J, Han K, Lee TY (2020) A single-tube sample preparation method based on a dual-electrostatic interaction strategy for molecular diagnosis of gram-negative bacteria. Microchim Acta 187:558

    Article  CAS  Google Scholar 

  8. Shin S, Jung Y, Uhm H, Song M, Son S, Goo J, Jeong C, Song JJ, Kim VN, Hohng S (2020) Quantification of purified endogenous miRNAs with high sensitivity and specificity. Nat Commun 11:6033

    Article  CAS  Google Scholar 

  9. Besant JD, Sargent EH, Kelley SO (2015) Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria. Lab Chip 15:2799–2807

    Article  CAS  Google Scholar 

  10. Gao X, Yin YL, Wu HT, Hao Z, Li JJ, Wang S, Liu YQ (2021) Integrated SERS platform for reliable detection and photothermal elimination of bacteria in whole blood samples. Anal Chem 93:1569–1577

    Article  CAS  Google Scholar 

  11. Zhu YD, Gasilova N, Jovic M, Qiao L, Liu BH, Lovey LT, Pick H, Girault HH (2018) Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry. Chem Sci 9:2212–2221

    Article  CAS  Google Scholar 

  12. Zhao Y, Hu XG, Hu S, Peng Y (2020) Applications of fiber-optic biochemical sensor in microfluidic chips: a review. Biosens Bioelectron 166:112447

  13. VanArsdale E, Tsao CY, Liu Y, Chen CY, Payne GF, Bentley WE (2019) Redox-based synthetic biology enables electrochemical detection of the herbicides dicamba and roundup via rewired Escherichia coli. ACS Sens 4:1180–1184

    Article  CAS  Google Scholar 

  14. Zhang J, Jiang Y, Xia X, Wu J, Almeida R, Eda S, Qi HC (2020) An on-site, highly specific immunosensor for Escherichia coli detection in field milk samples from mastitis-affected dairy cattle. Biosens Bioelectron 165:112366

  15. Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118:6766–6843

    Article  CAS  Google Scholar 

  16. Chowdhury AD, Takemura K, Li TC, Suzuki T, Park EY (2019) Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat Commun 10:3737

    Article  Google Scholar 

  17. Shi Y, Peng LL, Ding Y, Zhao Y, Yu GH (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696

    Article  CAS  Google Scholar 

  18. Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, Miguel A, Chang F, Weibel DB, Theriot JA, Huang KC (2018) The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559:617−+

  19. Vetterli SU, Zerbe K, Muller M, Urfer M, Mondal M, Wang SY, Moehle K, Zerbe O, Vitale A, Pessi G, Eberl L, Wollscheid B, Robinson JA (2018) Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in Escherichia coli. Sci Adv 4:eaau2634

  20. Capeletti LB, de Oliveira JFA, Loiola LMD, Galdino FE, Santos DED, Soares TA, Freitas RD, Cardoso MB (2019) Gram-negative bacteria targeting mediated by carbohydrate–carbohydrate interactions induced by surface-modified nanoparticles. Adv Funct Mater 29:1904216

    Article  CAS  Google Scholar 

  21. Xu J, Qu KZ, Zhao JJ, Jian XX, Gao ZD, Xu JW, Song YY (2020) In situ monitoring of the “point discharge” induced antibacterial process by the onsite formation of a Raman probe. Anal Chem 92:2323–2330

    Article  CAS  Google Scholar 

  22. Nguyen TD, Pham MC, Piro B, Aubard J, Takenouti H, Keddam M (2004) Conducting polymers and corrosion PPy - PPy-PDAN composite films - electrosynthesis and characterization. J Electrochem Soc 151:B325–B330

    Article  CAS  Google Scholar 

  23. Wang YB, Iqbal Z, Mitra S (2006) Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc 128:95–99

    Article  Google Scholar 

  24. Bai MH, Bian LJ, Song Y, Liu XX (2014) Electrochemical codeposition of vanadium oxide and polypyrrole for high-performance supercapacitor with high working voltage. ACS Appl Mater Interfaces 6:12656–12664

    Article  CAS  Google Scholar 

  25. Devi S, Kaur R, Paul AK, Tyagi S (2018) MPA-capped CdSe QD/mercaptoethylamine-capped AuNP nanocomposite-based sensor for instant detection of trinitrotoluene. Colloid Polym Sci 296:427–440

    Article  CAS  Google Scholar 

  26. Siebner−Freibach H, Hadar Y, Yariv S, Lapides I, Chen Y, (2006) Thermospectroscopic study of the adsorption mechanism of the hydroxamic siderophore ferrioxamine B by calcium montmorillonite. J Agric Food Chem 54:1399–1408

    Article  Google Scholar 

  27. Gangopadhyay R, Chowdhury AD, De A (2012) Functionalized polyaniline nanowires for biosensing. Sens Actuators B Chem 171:777–785

    Article  Google Scholar 

  28. Just PE, Chane-Ching KI, Lacroix JC, Lacaze PC (2001) Electrochemical oxidation of dipyrrolyl derivatives: application to the formation of reticulated conducting polymers with conjugated spacers. Electrochim Acta 46:3279–3285

    Article  CAS  Google Scholar 

  29. Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15:426–432

    Article  CAS  Google Scholar 

  30. Lundstedt E, Kahne D, Ruiz N (2020) Assembly and maintenance of lipids at the bacterial outer membrane. Chem Rev 121:5098–5123

    Article  Google Scholar 

  31. Hampton RY, Raetz CRH (1991) Macrophage catabolism of lipid A is regulated by endotoxin stimulation. J Biol Chem 266:19499–19509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks are due to the instrument or data analysis from Analytical and Testing Center, Northeastern University.

Funding

This work was supported by the National Natural Science Foundation of China (No. 21775016, 21874013, and 22074013), the Fundamental Research Funds for the Central Universities (N2005027, N2105018, N180504006), and Talent Project of Revitalizing Liaoning (XLYC1807165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Yan Song.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

604_2021_5073_MOESM1_ESM.docx

Supplementary file1 (DOCX 4413 kb) Additional information about SEM spectra, LSCFM images, Water contact angle images, Zeta potential, EIS and CV plots, and optimization of experimental conditions were listed in supporting information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Zhang, X., Li, Z. et al. Development of a pulse-induced electrochemical biosensor based on gluconamide for Gram-negative bacteria detection. Microchim Acta 188, 399 (2021). https://doi.org/10.1007/s00604-021-05073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05073-9

Keywords

Navigation