Skip to main content
Log in

Photochromic immunoassay for tumor marker detection based on ZnO/AgI nanophotocatalyst

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photochromic immunoassay was built for tumor marker detection based on ZnO/AgI nanophotocatalyst. Frist, ZnO/AgI nanoparticles were synthesized and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectrometry (FTIR). The color development is caused by tetramethyl benzidine (TMB) solution oxidated by ZnO/AgI nanomaterials. The electron transitions in ZnO/AgI nanomaterials are driven by visible light irradiation, generating photogenerated hole and oxidizing TMB to blue solution. Appropriate band width between ZnO and AgI promotes separation of photogenerated electrons and holes and enhances oxidation efficiency. A sandwich-type immunoassay was constructed based on ZnO/AgI nanomaterial as labels. The absorbance at 650 nm of reaction solution is positively correlated with antigen concentration. The developed immunoassay showed good performance for carcinoma embryonic antigen (CEA) detection in the range 0.1–7.0 ng/mL with a detection limit of 65 pg/mL. The photochromic immunoassay also exhibited preferable selectivity, repeatability, and stability.

Graphical abstract

A novel colorimetric immunoassay was constructed based on ZnO/AgI photocatalyst. ZnO/AgI nanomaterials occur electron transitions under visible light irradiation and generate photogenerated hole, which can oxidize TMB to blue solution. Carcinoembryonic antigen in sample was detected sensitively due to the high catalytic efficiency of ZnO/AgI nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen Y, Liu H, Jiang J, Gu C, Zhao Z, Jiang T (2020) Immunoassay of tumor markers based on graphene surface-enhanced Raman spectroscopy. ACS Appl Bio Mater 3:8012–8022

    Article  CAS  Google Scholar 

  2. Kim Y, Cho Y, Min J, Han S (2021) Circulating tumor marker isolation with the chemically stable and instantly degradable (CSID) hydrogel immunospheres. Anal Chem 93:1100–1109

    Article  CAS  Google Scholar 

  3. Singh N, Huang L, Wang D, Shao N, Zhang X (2020) Simultaneous detection of a cluster of differentiation markers on leukemia-derived exosomes by multiplex immuno-polymerase chain reaction via capillary electrophoresis analysis. Anal Chem 92:10569–10577

    Article  CAS  Google Scholar 

  4. Su L, Hu H, Tian Y, Jia C, Wang L, Zhang H, Wang J, Zhang D (2021) Highly sensitive colorimetric/surface-enhanced Raman spectroscopy immunoassay relying on a metallic core–shell Au/Au nanostar with clenbuterol as a target analyte. Anal Chem 93:8362–8369

    Article  CAS  Google Scholar 

  5. Zhang Y, Zhang Z, Rong S, Yu H, Gao H, Ding P, Chang D, Pan H (2020) Electrochemical immunoassay for the carcinoembryonic antigen based on Au NPs modified zeolitic imidazolate framework and ordered mesoporous carbon. Microchim Acta 187:264

    Article  CAS  Google Scholar 

  6. Chen R, Ren C, Liu M, Ge X, Qu M, Zhou X, Liang M, Liu Y, Li F (2021) Early detection of SARS-CoV-2 seroconversion in humans with aggregation-induced near-infrared emission nanoparticle-labeled lateral flow immunoassay. ACS Nano 15(5):8996–9004

    Article  CAS  Google Scholar 

  7. Tang J, Xiong P, Cheng Y, Chen Y, Peng S, Zhu Z (2019) Enzymatic oxydate-triggered AgNPs etching: a novel signal-on photoelectrochemical immunosensing platform based on Ag@AgCl nanocubes loaded RGO plasmonic heterostructure. Biosens Bioelectron 130:125–131

    Article  CAS  Google Scholar 

  8. Gao Y, Zhou Y, Chandrawati R (2020) Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA). ACS Appl Nano Mater 3:1–21

    Article  Google Scholar 

  9. Tan X, Chen Q, Zhu H, Zhu S, Gong Y, Wu X, Chen Y, Li X, Li M, Liu W, Fan X (2020) Fast and reproducible ELISA laser platform for ultrasensitive protein quantification. ACS Sensors 5:110–117

    Article  CAS  Google Scholar 

  10. Jassby D, Budarz J, Wiesner M (2012) Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ Sci Technol 46:6934–6941

    Article  CAS  Google Scholar 

  11. Zhao T, Xing Z, Xiu Z, Li Z, Yang S, Zhou W (2019) Oxygen-doped MoS2 nanospheres/CdS quantum dots/g-C3N4 nanosheets super-architectures for prolonged charge lifetime and enhanced visible-light-driven photocatalytic performance. ACS Appl Mater Inter 11:7104–7111

    Article  CAS  Google Scholar 

  12. Chen F, Yang Q, Sun J, Yao F, Wang S, Wang Y, Wang X, Li X, Niu C, Wang D, Zeng G (2016) Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism. ACS Appl Mater Inter 8:32887–32900

    Article  CAS  Google Scholar 

  13. Tian L, Yue L, Wang F, Min S, Zhang Z (2020) CdS/Metallic Mo hybrid photocatalysts with highly active interfacial Mo–O–S active sites for efficient photocatalytic hydrogen evolution under visible light. J Phys Chem C 124:18911–18919

    Article  CAS  Google Scholar 

  14. Han Q, Li L, Gao W, Shen Y, Wang L, Zhang Y, Wang X, Shen Q, Xiong Y, Zhou Y, Zou Z (2021) Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction. ACS Appl Mater Inter 13:15092–15100

    Article  CAS  Google Scholar 

  15. Zheng J, Bhattcahrayya A, Wu P, Chen Z, Highfield J, Dong Z, Xu R (2010) The origin of visible light absorption in chalcogen element (S, Se, and Te)-doped anatase TiO2 photocatalysts. J Phys Chem C 114:7063–7069

    Article  CAS  Google Scholar 

  16. Wang W, Xu P, Chen M, Zeng G, Zhang C, Zhou C, Yang Y, Huang D, Lai C, Cheng M, Hu L, Xiong W, Guo H, Zhou M (2018) Alkali metal-assisted synthesis of graphite carbon nitride with tunable band-gap for enhanced visible-light-driven photocatalytic performance. ACS Sustain Chem Eng 6:15503–15516

    Article  CAS  Google Scholar 

  17. Li Z, Luan Y, Qu Y, Jing L (2015) Modification strategies with inorganic acids for efficient photocatalysts by promoting the adsorption of O2. ACS Appl Mater Inter 7:22727–22740

    Article  CAS  Google Scholar 

  18. Ma S, Hisatomi T, Maeda K, Moriya Y, Domen K (2012) Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J Am Chem Soc 134:19993–19996

    Article  CAS  Google Scholar 

  19. Yun H, Lee H, Kim N, Lee D, Yu S, Yi J (2011) A combination of two visible-light responsive photocatalysts for achieving the Z-Scheme in the solid state. ACS Nano 5:4084–4090

    Article  CAS  Google Scholar 

  20. Tan W, Li Y, Jiang W, Gao C, Zhuang C (2020) CdS nanospheres decorated with NiS quantum dots as nobel-metal-free photocatalysts for efficient hydrogen evolution. ACS Appl Energ Mater 3:8048–8054

    Article  CAS  Google Scholar 

  21. Huang Z, Song H, Li A, An Z, Zhang K, Xiang X, Shu X, He J (2020) Z-Scheme ZnM-LDHs/g-C3N4 (M = Al, Cr) photocatalysts: their desulfurization performance and mechanism for model oil with air. Energ Fuel 34:14676–14687

    Article  CAS  Google Scholar 

  22. Li Z, Huang F, Xu Y, Yan A, Dong H, Luo S, Hu M (2021) 2D/2D Nb3O7F/g-C3N4 heterojunction photocatalysts with enhanced hydrogen evolution activity. ACS Appl Energ Mater 4:839–8452

    Article  CAS  Google Scholar 

  23. Xia C, Xue C, Bian W, Liu J, Wang J, Wei Y, Zhang J (2021) Hollow Co9S8/CdS nanocages as efficient photocatalysts for hydrogen evolution. ACS Appl Nano Mater 4:2743–2751

    Article  CAS  Google Scholar 

  24. Iqbal A, Kafizas A, Sotelo-Vazquez C, Wilson R, Ling M, Taylor A, Blackman C, Bevan K, Parkin I, Quesada-Cabrera R (2021) Charge transport phenomena in heterojunction photocatalysts: the WO3/TiO2 system as an archetypical model. ACS Appl Mater Inter 13:9781–9793

    Article  CAS  Google Scholar 

  25. Mirzaeifard Z, Shariatinia Z, Jourshabani M, Darvishi S (2020) ZnO photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation. Ind Eng Chem Res 59:15894–15911

    Article  CAS  Google Scholar 

  26. Dehghani M, Nadeem H, Raghuwanshi V, Mahdavi H, Holl M, Batchelor W (2020) ZnO/Cellulose nanofiber composites for sustainable sunlight-driven dye degradation. ACS Appl Nano Mater 3:10284–1029511

    Article  CAS  Google Scholar 

  27. Mahyoub S, Hezam A, Qaraah F, Namratha K, Nayan M, Drmosh Q, Ponnamma D, Byrappa K (2021) Surface plasmonic resonance and Z-Scheme charge transport synergy in three-dimensional flower-like Ag–CeO2–ZnO heterostructures for highly improved photocatalytic CO2 reduction. ACS Appl Energ Mater 4:3544–3554

    Article  CAS  Google Scholar 

  28. Shubha J, Adil S, Khan M, Hatshan M, Khan A (2021) Facile fabrication of a ZnO/Eu2O3/NiO-Based ternary heterostructure nanophotocatalyst and its application for the degradation of methylene blue. ACS Omega 6:3866–3874

    Article  CAS  Google Scholar 

  29. He L, Zhang S, Zhang J, Chen G, Meng S, Fan Y, Zheng X, Chen S (2020) Investigation on the mechanism and inner impetus of photogenerated charge transfer in WO3/ZnO heterojunction photocatalysts. J Phys Chem C 124:27916–27929

    Article  CAS  Google Scholar 

  30. Huang H, Huang N, Wang Z, Xia G, Chen M, He L, Tong Z, Ren C (2017) Room-temperature synthesis of carnation-like ZnO@AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets with enhanced visible light photocatalytic activity. J Colloid Interf Sci 502:77–88

    Article  CAS  Google Scholar 

  31. Pirhashemi M, Habibi-Yangjeh A (2017) Preparation of novel nanocomposites by deposition of Ag2WO4 and AgI over ZnO particles: efficient plasmonic visible-light-driven photocatalysts through a cascade mechanism. Ceram Int 43:13447–13460

    Article  CAS  Google Scholar 

  32. Malmira M, Mosayebib A, Sheikhpourc M (2019) High nitrate removal by ZnO/AgI nanophotocatalyst using graphene-based compounds. Desalin Water Treat 165:124–133

    Article  Google Scholar 

  33. Vignesh K, Suganthi A, Rajarajan M, Sara A (2012) Photocatalytic activity of AgI sensitized ZnO nanoparticles under visible light irradiation. Powder Technol 224:331–337

    Article  CAS  Google Scholar 

  34. Wang X, Zhang B, Li J, Chang H, Wei W (2017) A simple and fast chromogenic reaction based on Ag3PO4/Ag nanocomposite for tumor marker detection. Talanta 175:229–234

    Article  CAS  Google Scholar 

  35. Ding C, Wang X, Song K, Zhang B, Wang J, Zhao Z, Chang H, Wei W (2018) Visible light enabled colorimetric tumor marker detection using ternary GO-C3N4-AgBr heterojunction nanophotocatalyst. Sensor Actuat B Chem 268:376–382

    Article  CAS  Google Scholar 

Download references

Funding

Supported by the Fund for Shanxi “1331 Project” Key Innovative Research Team, China Postdoctoral Science Foundation Funded Project (No. 2018M640248), and The National Natural Science Foundation of China (Grant No. 21605111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Zhang or Yan Cheng.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1273 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, X. & Cheng, Y. Photochromic immunoassay for tumor marker detection based on ZnO/AgI nanophotocatalyst. Microchim Acta 189, 77 (2022). https://doi.org/10.1007/s00604-021-05050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05050-2

Keywords

Navigation