Skip to main content

Advertisement

Log in

Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman spectroscopy is an alternative detection tool for monitoring food security. However, there is still a lack of a conclusion of SERS detection with respect to pesticides and real sample analysis, and the summary of intelligent algorithms in SERS is also a blank. In this review, a comprehensive report of pesticides detection using SERS technology is given. The SERS detection characteristics of different types of pesticides and the influence of substrate on inspection are discussed and compared by the typical ways of classification. The key points, including the progress in real sample analysis and Raman data processing methods with intelligent algorithm, are highlighted. Lastly, major challenges and future research trends of SERS analysis of pesticide residue are also addressed. SERS has been proven to be a powerful technique for rapid test of residue pesticides in complex food matrices, but there still is a tremendous development space for future research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References 

  1. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4. https://doi.org/10.3389/fpubh.2016.00148

  2. Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet. https://doi.org/10.1016/S0140-6736(07)61202-1

  3. Boobis AR, Ossendorp BC, Banasiak U, Hamey PY, Sebestyen I, Moretto A (2008) Cumulative risk assessment of pesticide residues in food. Toxicol Lett 180(2):137–150

  4. Medina‐Pastor P, Triacchini G (2020) The 2018 European Union report on pesticide residues in food. EFSA Journal 18(4). https://doi.org/10.2903/j.efsa.2020.6057

  5. Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. Journal of Obstetric Gynecologic & Neonatal Nursing Jognn 39(1):103–110. https://doi.org/10.1111/j.1552-6909.2009.01092.x

    Article  Google Scholar 

  6. Samsidar A, Siddiquee S, Shaarani SM (2018) A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci Technol 71:188–201. https://doi.org/10.1016/j.tifs.2017.11.011

    Article  CAS  Google Scholar 

  7. Jin B, Xie L, Guo Y, Pang G (2012) Multi-residue detection of pesticides in juice and fruit wine: a review of extraction and detection methods. Food Res Int 46(1):399–409. https://doi.org/10.1016/j.foodres.2011.12.003

    Article  CAS  Google Scholar 

  8. Sulaiman NS, Rovina K, Joseph VM (2019) Classification, extraction and current analytical approaches for detection of pesticides in various food products. Journal of Consumer Protection and Food Safety 14(3):209–221. https://doi.org/10.1007/s00003-019-01242-4

    Article  Google Scholar 

  9. Reyzer ML, Brodbelt JS (2001) Analysis of fire ant pesticides in water by solid-phase microextraction and gas chromatography/mass spectrometry or high-performance liquid chromatography/mass spectrometry. Anal Chim Acta 436(1):11–20. https://doi.org/10.1016/s0003-2670(01)00893-5

    Article  CAS  Google Scholar 

  10. Pang S, Yang T, He L (2016) Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. Trac-Trends In Analytical Chemistry 85:73–82. https://doi.org/10.1016/j.trac.2016.06.017

    Article  CAS  Google Scholar 

  11. Szoke-Nagy T, Porav AS, Coman C, Cozar BI, Dina NE, Tripon C (2019) Characterization of the action of antibiotics and essential oils against bacteria by surface-enhanced Raman spectroscopy and scanning electron microscopy. Anal Lett 52(1):190–200. https://doi.org/10.1080/00032719.2018.1430150

    Article  CAS  Google Scholar 

  12. Jiang Y, Sun D-W, Pu H, Wei Q (2018) Surface enhanced Raman spectroscopy (SERS): a novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol 75:10–22. https://doi.org/10.1016/j.tifs.2018.02.020

    Article  CAS  Google Scholar 

  13. Mccreery RL, Cooper JB (2001) Raman spectroscopy for chemical analysis. Appl Spectrosc 55(9):295. https://doi.org/10.1088/0957-0233/12/5/704

    Article  Google Scholar 

  14. Fleischmann M, Hendra PJ, Mcquillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  15. Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtulus O, Lee SH, Lindquist NC, Oh S-H, Haynes CL (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13(24):11551–11567. https://doi.org/10.1039/c0cp01841d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trivedi DJ, Barrow B, Schatz GC (2020) Understanding the chemical contribution to the enhancement mechanism in SERS: connection with Hammett parameters. J Chem Phys 153(12). https://doi.org/10.1063/5.0023359

  17. Cialla D, Maerz A, Boehme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54. https://doi.org/10.1007/s00216-011-5631-x

    Article  CAS  PubMed  Google Scholar 

  18. Ansar SM, Li X, Zou S, Zhang D (2012) Quantitative comparison of Raman activities, SERS activities, and SERS enhancement factors of organothiols: implication to chemical enhancement. J Phys Chem Lett 3(5):560–565. https://doi.org/10.1021/jz2016439

    Article  CAS  PubMed  Google Scholar 

  19. Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi JR (2008) Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: Charge-Transfer Contribution. J Phys Chem C 112(50):20095–20098. https://doi.org/10.1021/jp8074145

    Article  CAS  Google Scholar 

  20. Xu M-L, Gao Y, Han XX, Zhao B (2017) Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. J Agric Food Chem 65(32):6719–6726. https://doi.org/10.1021/acs.jafc.7b02504

    Article  CAS  PubMed  Google Scholar 

  21. Zhu C, Zhao Q, Meng G, Wang X, Hu X, Han F, Lei Y (2020) Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue. Nanotechnology 31(20). https://doi.org/10.1088/1361-6528/ab7100

  22. Weng S, Zhu W, Li P, Yuan H, Zhang X, Zheng L, Zhao J, Huang L, Han P (2020) Dynamic surface-enhanced Raman spectroscopy for the detection of acephate residue in rice by using gold nanorods modified with cysteamine and multivariant methods. Food Chem 310. https://doi.org/10.1016/j.foodchem.2019.125855

  23. Ma P, Wang L, Xu L, Li J, Zhang X, Chen H (2020) Rapid quantitative determination of chlorpyrifos pesticide residues in tomatoes by surface-enhanced Raman spectroscopy. Eur Food Res Technol 246(1):239–251. https://doi.org/10.1007/s00217-019-03408-8

    Article  CAS  Google Scholar 

  24. Lafuente M, Berenschot E J W, Tiggelaar R M, Rodrigo S G, Mallada R, Tas N R, Pina M P (2020) Attomolar SERS detection of organophosphorous pesticides using silver mirror-like micro-pyramids as active substrate. Microchimica Acta 187(4). https://doi.org/10.1007/s00604-020-4216-9

  25. Huang D, Zhao J, Wang M, Zhu S (2020) Snowflake-like gold nanoparticles as SERS substrates for the sensitive detection of organophosphorus pesticide residues. Food Control 108. https://doi.org/10.1016/j.foodcont.2019.106835

  26. Chen W, Long F, Song G, Chen J, Peng S, Li P (2020) Rapid and sensitive detection of pesticide residues using dynamic surface-enhanced Raman spectroscopy. J Raman Spectrosc. https://doi.org/10.1002/jrs.5823

    Article  Google Scholar 

  27. Zhang M, Chen T, Liu Y, Zhu J, Liu J, Wu Y (2019) Three-dimensional TiO2-Ag nanopore arrays for powerful photoinduced enhanced Raman spectroscopy (PIERS) and versatile detection of toxic organics. ChemNanoMat 5(1):55–60. https://doi.org/10.1002/cnma.201800389

    Article  CAS  Google Scholar 

  28. Yaseen T, Pu H, Sun D-W (2019) Effects of ions on core-shell bimetallic Au@Ag NPs for rapid detection of phosalone residues in peach by SERS. Food Anal Methods 12(9):2094–2105. https://doi.org/10.1007/s12161-019-01454-2

    Article  Google Scholar 

  29. Weng S, Zhu W, Dong R, Zheng L, Wang F (2019) Rapid detection of pesticide residues in paddy water using surface-enhanced Raman spectroscopy. Sensors 19(3). https://doi.org/10.3390/s19030506

  30. Weng S, Yu S, Dong R, Zhao J, Liang D (2019) Detection of pirimiphos-methyl in wheat using surface-enhanced Raman spectroscopy and chemometric methods. Molecules 24(9). https://doi.org/10.3390/molecules24091691

  31. Wang C, Zhang Z, He L (2019) Development of a headspace solid-phase microextraction-surface-enhanced Raman scattering approach to detect volatile pesticides. J Raman Spectrosc 50(1):6–14. https://doi.org/10.1002/jrs.5511

  32. Asgari S, Wu G, Aghvami SA, Zhang Y, Lin M (2021) Optimisation using the finite element method of a filter-based microfluidic SERS sensor for detection of multiple pesticides in strawberry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 38(4):646–658. https://doi.org/10.1080/19440049.2021.1881624

    Article  CAS  PubMed  Google Scholar 

  33. Tu Q, Yang T, Qu Y, Gao S, Zhang Z, Zhang Q, Wang Y, Wang J, He L (2019) In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Analyst 144(6):2017–2025. https://doi.org/10.1039/c8an02473a

    Article  CAS  PubMed  Google Scholar 

  34. Lin G, Zhu J, Wu M, Lu P, Wu W (2019) Ultrasensitive and uniform surface-enhanced Raman scattering substrates for the methidathion detection. AIP Adv 9(3). https://doi.org/10.1063/1.5063969

  35. Tognaccini L, Ricci M, Gellini C, Feis A, Smulevich G, Becucci M (2019) Surface enhanced Raman spectroscopy for in-field detection of pesticides: a test on dimethoate residues in water and on olive leaves. Molecules 24(2). https://doi.org/10.3390/molecules24020292

  36. Yaseen T, Pu H, Sun D-W (2019) Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Talanta 196:537–545. https://doi.org/10.1016/j.talanta.2018.12.030

    Article  CAS  PubMed  Google Scholar 

  37. Qu Y, He L (2020) Development of a facile rolling method to amplify an analyte’s weak SERS activity and its application for chlordane detection. Anal Methods 12(4):433–439. https://doi.org/10.1039/c9ay02140j

    Article  CAS  Google Scholar 

  38. Gong T, Huang Y, Wei Z, Huang W, Wei X, Zhang X (2020) Magnetic assembled 3D SERS substrate for sensitive detection of pesticide residue in soil. Nanotechnology 31(20). https://doi.org/10.1088/1361-6528/ab72b7

  39. Li H, Wang Y, Li Y, Zhang J, Qiao Y, Wang Q, Che G (2020) Fabrication of pollutant-resistance SERS imprinted sensors based on SiO2@TiO2@Ag composites for selective detection of pyrethroids in water. J Phys Chem Solids 138:109254. https://doi.org/10.1016/j.jpcs.2019.109254

    Article  CAS  Google Scholar 

  40. Chi H, Wang C, Wang Z, Zhu H, Mesias VSD, Dai X, Chen Q, Liu W, Huang J (2020) Highly reusable nanoporous silver sheet for sensitive SERS detection of pesticides. ANA 145(15):5158–5165. https://doi.org/10.1039/d0an00999g

    Article  CAS  Google Scholar 

  41. Zhu C, Hu X, Wang X (2019) Silver nanocubes/graphene oxide hybrid film on a hydrophobic surface for effective molecule concentration and sensitive SERS detection. Appl Surf Sci 470:423–429. https://doi.org/10.1016/j.apsusc.2018.11.169

    Article  CAS  Google Scholar 

  42. Zhou X, Zhao Q, Liu G, Cai W (2019) 4-Mercaptophenylboronic acid modified Au nanosheets-built hollow sub-microcubes for active capture and ultrasensitive SERS-based detection of hexachlorocyclohexane pesticides. Sensors and Actuators B Chem 293:63–70. https://doi.org/10.1016/j.snb.2019.04.153

    Article  CAS  Google Scholar 

  43. Li R, Chen M, Yang H, Hao N, Liu Q, Peng M, Wang L, Hu Y, Chen X (2021) Simultaneous in situ extraction and self-assembly of plasmonic colloidal gold superparticles for SERS detection of organochlorine pesticides in water. Anal Chem 93(10):4657–4665. https://doi.org/10.1021/acs.analchem.1c00234

    Article  CAS  PubMed  Google Scholar 

  44. Kubackova J, Fabriciova G, Miskovsky P, Jancura D, Sanchez-Cortes S (2015) Sensitive Surface-Enhanced Raman Spectroscopy (SERS) Detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Anal Chem 87(1):663–669. https://doi.org/10.1021/ac503672f

    Article  CAS  PubMed  Google Scholar 

  45. Jiao T, Mehedi Hassan M, Zhu J, Ali S, Ahmad W, Wang J, Lv C, Chen Q, Li H (2021) Quantification of deltamethrin residues in wheat by Ag@ZnO NFs-based surface-enhanced Raman spectroscopy coupling chemometric models. Food Chem 337:127652. https://doi.org/10.1016/j.foodchem.2020.127652

    Article  CAS  PubMed  Google Scholar 

  46. Balaji R, Vengudusamy R, Chen SM, Chen TW, Liu X, Khan MR, Z A A, Ajmal Ali M, Wabaidur S M, (2020) High-performance SERS detection of pesticides using BiOCl-BiOBr@Pt/Au hybrid nanostructures on styrofoams as 3D functional substrate. Mikrochim Acta 187(10):580. https://doi.org/10.1007/s00604-020-04558-3

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Yang T, Song Y, Zhu J, Wang D, Li W (2019) Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sensors Actuators B Chem 283:230–238. https://doi.org/10.1016/j.snb.2018.11.112

    Article  CAS  Google Scholar 

  48. Parnsubsakul A, Ngoensawat U, Wutikhun T, Sukmanee T, Sapcharoenkun C, Pienpinijtham P, Ekgasit S (2020) Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Carbohydr Polym 235. https://doi.org/10.1016/j.carbpol.2020.115956

  49. Zhang Z, Si T, Liu J, Zhou G (2019) In-situ grown silver nanoparticles on nonwoven fabrics based on mussel-inspired polydopamine for highly sensitive SERS carbaryl pesticides detection. Nanomaterials 9(3). https://doi.org/10.3390/nano9030384

  50. Zhang L, Li X, Liu W, Hao R, Jia H, Dai Y, Amin MU, You H, Li T, Fang J (2019) Highly active Au NP microarray films for direct SERS detection. J Mater Chem C 7(48):15259–15268. https://doi.org/10.1039/c9tc04848k

    Article  CAS  Google Scholar 

  51. Hussain A, Pu H, Sun D-W (2020) Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS. J Food Meas Charact 14(4):2021–2029. https://doi.org/10.1007/s11694-020-00448-7

    Article  Google Scholar 

  52. He J, Li H, Zhang L, Zhi X, Li X, Wang X, Feng Z, Shen G, Ding X (2021) Silver microspheres aggregation-induced Raman enhanced scattering used for rapid detection of carbendazim in Chinese tea. Food Chem 339:128085. https://doi.org/10.1016/j.foodchem.2020.128085

    Article  CAS  PubMed  Google Scholar 

  53. Zhao P, Liu H, Zhang L, Zhu P, Ge S, Yu J (2020) Paper-based SERS sensing platform based on 3D silver dendrites and molecularly imprinted identifier sandwich hybrid for neonicotinoid quantification. ACS Appl Mater Interfaces 12(7):8845–8854. https://doi.org/10.1021/acsami.9b20341

    Article  CAS  PubMed  Google Scholar 

  54. Xu Y, Kutsanedzie F Y H, Hassan M, Zhu J, Ahmad W, Li H, Chen Q (2020) Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem 315. https://doi.org/10.1016/j.foodchem.2020.126300

  55. Wang K, Sun D-W, Pu H, Wei Q (2020) Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chem 310. https://doi.org/10.1016/j.foodchem.2019.125923

  56. Chen X, Lin H, Xu T, Lai K, Han X, Lin M (2020) Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy. Food Chem 315. https://doi.org/10.1016/j.foodchem.2020.126276

  57. Zhao H, Hasi W, Li N, Sha X, Lin S, Han S (2019) In situ analysis of pesticide residues on the surface of agricultural products via surface-enhanced Raman spectroscopy using a flexible Au@Ag-PDMS substrate. New J Chem 43(33):13075–13082. https://doi.org/10.1039/c9nj01901d

    Article  CAS  Google Scholar 

  58. Zhao B, Feng S, Hu Y, Wang S, Lu X (2019) Rapid determination of atrazine in apple juice using molecularly imprinted polymers coupled with gold nanoparticles-colorimetric/SERS dual chemosensor. Food Chem 276:366–375. https://doi.org/10.1016/j.foodchem.2018.10.036

    Article  CAS  PubMed  Google Scholar 

  59. Xu N, Lai K, Fan Y, Rasco B A, Huang Y (2019) Rapid analysis of herbicide diquat in apple juice with surface enhanced Raman spectroscopy: effects of particle size and the ratio of gold to silver with gold and gold-silver core-shell bimetallic nanoparticles as substrates. Lwt-Food Sci Technol 116. https://doi.org/10.1016/j.lwt.2019.108547

  60. Wang Q, Liu Y, Bai Y, Yao S, Wei Z, Zhang M, Wang L, Wang L (2019) Superhydrophobic SERS substrates based on silver dendrite-decorated filter paper for trace detection of nitenpyram. Anal Chim Acta 1049:170–178. https://doi.org/10.1016/j.aca.2018.10.039

    Article  CAS  PubMed  Google Scholar 

  61. Zhang W, Liu Z, Qin H, Li H, Du H, Fang L, Wang C, Zhang S, Chen Z (2020) Surface-enhanced Raman spectroscopy coupled with dispersive solid-phase extraction for the rapid detection of tricyclazole residues in rice and Brassica campestris L. ssp. chinensis var. utilis Tsen. Anal Sci 36(12):1438–1444. https://doi.org/10.2116/analsci.20P166

    Article  Google Scholar 

  62. Creedon N, Lovera P, Moreno JG, Nolan M, O’Riordan A (2020) Highly sensitive SERS detection of neonicotinoid pesticides. Complete Raman spectral assignment of clothianidin and imidacloprid. J Phys Chem A 124(36):7238–7247. https://doi.org/10.1021/acs.jpca.0c02832

    Article  CAS  PubMed  Google Scholar 

  63. Wei Q, Zhang L, Song C, Yuan H, Li X (2021) Quantitative detection of dithiocarbamate pesticides by surface-enhanced Raman spectroscopy combined with an exhaustive peak-seeking method. Anal Methods 13(12):1479–1488. https://doi.org/10.1039/d0ay01953d

    Article  CAS  PubMed  Google Scholar 

  64. Dao TC, Luong TQN (2020) Fabrication of uniform arrays of silver nanoparticles on silicon by electrodeposition in ethanol solution and their use in SERS detection of difenoconazole pesticide. RSC Adv 10(67):40940–40947. https://doi.org/10.1039/d0ra08060h

    Article  CAS  Google Scholar 

  65. Han M, Lu H, Zhang Z (2020) Fast and low-cost surface-enhanced raman scattering (SERS) method for on-site detection of flumetsulam in wheat. Molecules 25(20). https://doi.org/10.3390/molecules25204662

  66. Sun Y, Li Z, Huang X, Zhang D, Zou X, Shi J, Zhai X, Jiang C, Wei X, Liu T (2019) A nitrile-mediated aptasensor for optical anti-interference detection of acetamiprid in apple juice by surface-enhanced Raman scattering. Biosens Bioelectron 145. https://doi.org/10.1016/j.bios.2019.111672

  67. Nguyen Hoang L, Thi Ha N, Ngo Dinh N, Kim Y-H, Joo S-W (2019) Surface-enhanced Raman scattering detection of fipronil pesticide adsorbed on silver nanoparticles. Sensors 19(6). https://doi.org/10.3390/s19061355

  68. Chawla P, Kaushik R, Shiva Swaraj VJ, Kumar N (2018) Organophosphorus pesticides residues in food and their colorimetric detection. Environ Nanotechnol Monit Manag 10:292–307. https://doi.org/10.1016/j.enmm.2018.07.013

    Article  Google Scholar 

  69. Alak AM, Vo-Dinh T (1987) Surface-enhanced Raman spectrometry of organophosphorus chemical agents. Anal Chem 59(17):2149–2153. https://doi.org/10.1021/ac00144a030

    Article  CAS  PubMed  Google Scholar 

  70. Wang B, Zhang L, Zhou X (2014) Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Spectrochim Acta A Mol Biomol Spectrosc 121:63–69. https://doi.org/10.1016/j.saa.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  71. Weng S, Qiu M, Dong R, Wang F, Huang L, Zhang D, Zhao J (2018) Fast detection of fenthion on fruit and vegetable peel using dynamic surface-enhanced Raman spectroscopy and random forests with variable selection. Spectrochim Acta A Mol Biomol Spectrosc 200:20–25. https://doi.org/10.1016/j.saa.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  72. Benitta TA, Kapoor S, Christy SR, Raj ISC, Kumaran TTJ (2017) Surface enhanced raman spectra and theoretical study of an organophosphate malathion. Orient J Chem 33(2):760–767. https://doi.org/10.13005/ojc/330223

    Article  CAS  Google Scholar 

  73. Yigit N, Velioglu YS (2019) Effects of processing and storage on pesticide residues in foods. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2019.1702501

    Article  PubMed  Google Scholar 

  74. Li K, Zhang N, Zhang T, Wang Z, Chen M, Wu T, Ma S, Zhang M, Zhang J, Dinish US, Shum PP, Olivo M, Wei L (2018) Formation of ultra-flexible, conformal, and nano-patterned photonic surfaces via polymer cold-drawing. J Mater Chem C 6(17):4649–4657. https://doi.org/10.1039/c8tc00884a

    Article  CAS  Google Scholar 

  75. Zhang K, Zeng T, Tan X, Wu W, Tang Y, Zhang H (2015) A facile surface-enhanced Raman scattering (SERS) detection of rhodamine 6G and crystal violet using Au nanoparticle substrates. Appl Surf Sci 347:569–573. https://doi.org/10.1016/j.apsusc.2015.04.152

    Article  CAS  Google Scholar 

  76. Dou X, Zhao L, Li X, Qin L, Han S, Kang S-Z (2020) Ag nanoparticles decorated mesh-like MoS2 hierarchical nanostructure fabricated on Ti foil: a highly sensitive SERS substrate for detection of trace malachite green in flowing water. Appl Surf Sci 509. https://doi.org/10.1016/j.apsusc.2020.145331

  77. Hou R, Pang S, He L (2015) In situ SERS detection of multi-class insecticides on plant surfaces. Anal Methods 7(15):6325–6330. https://doi.org/10.1039/c5ay01058f

    Article  CAS  Google Scholar 

  78. Fan Y, Lai K, Rasco BA, Huang Y (2015) Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis. Lwt-Food Science and Technology 60(1):352–357. https://doi.org/10.1016/j.lwt.2014.08.011

    Article  CAS  Google Scholar 

  79. Zhang D, Liang P, Ye J, Xia J, Zhou Y, Huang J, Ni D, Tang L, Jin S, Yu Z (2019) Detection of systemic pesticide residues in tea products at trace level based on SERS and verified by GC-MS. Anal Bioanal Chem 411(27):7187–7196. https://doi.org/10.1007/s00216-019-02103-7

    Article  CAS  PubMed  Google Scholar 

  80. Vongsvivut J, Robertson EG, McNaughton D (2010) Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles. J Raman Spectrosc 41(10):1137–1148. https://doi.org/10.1002/jrs.2579

    Article  CAS  Google Scholar 

  81. Pang S, Labuza TP, He L (2014) Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. Analyst 139(8):1895–1901. https://doi.org/10.1039/c3an02263c

    Article  CAS  PubMed  Google Scholar 

  82. Hou R, Tong M, Gao W, Wang L, Yang T, He L (2017) Investigation of degradation and penetration behaviors of dimethoate on and in spinach leaves using in situ SERS and LC-MS. Food Chem 237:305–311. https://doi.org/10.1016/j.foodchem.2017.05.117

    Article  CAS  PubMed  Google Scholar 

  83. Guerrini L, Aliaga AE, Carcamo J, Gomez-Jeria JS, Sanchez-Cortes S, Campos-Vallette MM, Garcia-Ramos JV (2008) Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering. Anal Chim Acta 624(2):286–293. https://doi.org/10.1016/j.aca.2008.06.038

    Article  CAS  PubMed  Google Scholar 

  84. Wu Z, Xu E, Li J, Long J, Jiao A, Jin Z (2016) Highly sensitive determination of ethyl carbamate in alcoholic beverages by surface-enhanced Raman spectroscopy combined with a molecular imprinting polymer. RSC Adv 6(111):109442–109452. https://doi.org/10.1039/c6ra23165a

    Article  CAS  Google Scholar 

  85. Li H, Wang X, Wang Z, Jiang J, Qiao Y, Wei M, Yan Y, Li C (2017) A high-performance SERS-imprinted sensor doped with silver particles of different surface morphologies for selective detection of pyrethroids in rivers. New J Chem 41(23):14342–14350. https://doi.org/10.1039/c7nj02811c

    Article  CAS  Google Scholar 

  86. He Q, Li S, Yu D-n, Zhou G-m, Ji F-y, Subklew G (2010) The study of dimethoate by means of vibrational and surface enhanced Raman spectroscopy on Au/Ag core-shell nanoparticles. Spectrosc Spectr Anal 30(12):3249–3253. https://doi.org/10.3964/j.issn.1000-0593(2010)12-3249-05

    Article  CAS  Google Scholar 

  87. Yang D, Mircescu NE, Zhou H, Leopold N, Chis V, Oltean M, Ying Y, Haisch C (2013) DFT study and quantitative detection by surface-enhanced Raman scattering (SERS) of ethyl carbamate. J Raman Spectrosc 44(11):1491–1496. https://doi.org/10.1002/jrs.4375

    Article  CAS  Google Scholar 

  88. Yang T, Zhang Z, Zhao B, Hou R, Kinchla A, Clark JM, He L (2016) Real-time and in situ monitoring of pesticide penetration in edible leaves by surface-enhanced Raman scattering mapping. Anal Chem 88(10):5243–5250

    Article  CAS  Google Scholar 

  89. Yao C, Cheng F, Wang C, Wang Y, Guo X, Gong Z, Fan M, Zhang Z (2013) Separation, identification and fast determination of organophosphate pesticide methidathion in tea leaves by thin layer chromatography-surface-enhanced Raman scattering. Anal Methods 5(20):5560–5564. https://doi.org/10.1039/c3ay41152d

    Article  CAS  Google Scholar 

  90. Yadav IC, Devi NL (2017) Pesticides classification and its impact on human and environment. Environ Sci Eng 6:140–158

  91. Kim S-K (2020) Trophic transfer of organochlorine pesticides through food-chain in coastal marine ecosystem. Environ Eng Res 25(1):43–51. https://doi.org/10.4491/eer.2019.003

    Article  Google Scholar 

  92. Gautam SK, Suresh S (2006) Dechlorination of DDT, DDD and DDE in soil (slurry) phase using magnesium/palladium system. J Colloid Interface Sci 304(1):144–151. https://doi.org/10.1016/j.jcis.2006.08.052

    Article  CAS  PubMed  Google Scholar 

  93. Boada LD, Henriquez-Hernandez LA, Zumbado M, Almeida-Gonzalez M, Alvarez-Leon EE, Navarro P, Luzardo OP (2016) Organochlorine pesticides exposure and bladder cancer: evaluation from a gene-environment perspective in a hospital-based case-control study in the Canary Islands (Spain). J Agromed 21(1):34–42. https://doi.org/10.1080/1059924x.2015.1106374

    Article  CAS  Google Scholar 

  94. Moldovan R, Iacob B-C, Farcau C, Bodoki E, Oprean R (2021) Strategies for SERS detection of organochlorine pesticides. Nanomaterials 11(2). https://doi.org/10.3390/nano11020304

  95. Zhang D, Liang P, Yu Z, Xia J, Ni D, Wang D, Zhou Y, Cao Y, Chen J, Chen J, Jin S (2020) Self-assembled "bridge" substance for organochlorine pesticides detection in solution based on Surface Enhanced Raman Scattering. J Hazard Mater 382. https://doi.org/10.1016/j.jhazmat.2019.121023

  96. Sarwar M, Lee A (2016) Indoor risks of pesticide uses are significantly linked to hazards of the family members. Cogent Med 3(1):1155373

    Article  Google Scholar 

  97. Saillenfait A-M, Ndiaye D, Sabate J-P (2015) Pyrethroids: exposure and health effects - an update. Int J Hyg Environ Health 218(3):281–292. https://doi.org/10.1016/j.ijheh.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  98. Gupta RC (2004) Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates. Toxicol Mech Methods 14(3):103–143. https://doi.org/10.1080/15376520490429175

    Article  CAS  PubMed  Google Scholar 

  99. Li J-k, Zhou Y-l, Wen Y-x, Wang J-h, Hu Q-h (2009) Studies on the purification and characterization of soybean esterase, and its sensitivity to organophosphate and carbamate pesticides. Agric Sci Chin 8(4):455–463. https://doi.org/10.1016/s1671-2927(08)60232-1

    Article  CAS  Google Scholar 

  100. Mujawar S, Utture SC, Fonseca E, Matarrita J, Banerjee K (2014) Validation of a GC-MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables. Food Chem 150:175–181. https://doi.org/10.1016/j.foodchem.2013.10.148

    Article  CAS  PubMed  Google Scholar 

  101. Saute B, Narayanan R (2013) Solution-based SERS method to detect dithiocarbamate fungicides in different real-world matrices. J Raman Spectrosc 44(11):1518–1522. https://doi.org/10.1002/jrs.4387

    Article  CAS  Google Scholar 

  102. Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh K, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14(3):317–329. https://doi.org/10.1007/s10311-016-0566-2

    Article  CAS  Google Scholar 

  103. Chen X, Lin M, Sun L, Xu T, Lai K, Huang M, Lin H (2019) Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates. Food Chem 293:271–277. https://doi.org/10.1016/j.foodchem.2019.04.085

    Article  CAS  PubMed  Google Scholar 

  104. Han XX, Ji W, Zhao B, Ozaki Y (2017) Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale 9(15):4847–4861. https://doi.org/10.1039/c6nr08693d

    Article  CAS  PubMed  Google Scholar 

  105. Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L (2016) Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88(4):2149–2155. https://doi.org/10.1021/acs.analchem.5b03735

    Article  CAS  PubMed  Google Scholar 

  106. Lee JE, Park C, Chung K, Lim JW, Mota FM, Jeong U, Kim DH (2018) Viable stretchable plasmonics based on unidirectional nanoprisms. Nanoscale 10(8):4105–4112. https://doi.org/10.1039/C7NR08299A

    Article  CAS  PubMed  Google Scholar 

  107. Qiu H, Guo J, Wang M, Ji S, Cao M, Padhiar MA, Bhatti AS (2019) Reduced graphene oxide supporting Ag meso-flowers and phenyl-modified graphitic carbon nitride as self-cleaning flexible SERS membrane for molecular trace-detection. Colloids Surf A Physicochem Eng Asp 560:9–19. https://doi.org/10.1016/j.colsurfa.2018.09.059

    Article  CAS  Google Scholar 

  108. Liu B, Han G, Zhang Z, Liu R, Jiang C, Wang S, Han M-Y (2012) Shell thickness-dependent raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal Chem 84(1):255–261. https://doi.org/10.1021/ac202452t

    Article  CAS  PubMed  Google Scholar 

  109. Zhang Y, Teng Y, Qin Y, Ren Z, Wang Z (2020) Determination of ciprofloxacin in fish by surface-enhanced Raman scattering using a liquid-liquid self-assembled gold nanofilm. Anal Lett 53(4):660–670. https://doi.org/10.1080/00032719.2019.1663861

    Article  CAS  Google Scholar 

  110. Lin S, Lin X, Shang Y, Han S, Hasi W, Wang L (2019) Self-assembly of faceted gold nanocrystals for surface-enhanced Raman scattering application. J Phys Chem C 123(40):24714–24722. https://doi.org/10.1021/acs.jpcc.9b06686

    Article  CAS  Google Scholar 

  111. Kuttner C, Mayer M, Dulle M, Moscoso A, Lopez-Romero JM, Foerster S, Fery A, Perez-Juste J, Contreras-Caceres R (2018) Seeded growth synthesis of gold nanotriangles: size control, SAXS analysis, and SERS performance. ACS Appl Mater Interfaces 10(13):11152–11163. https://doi.org/10.1021/acsami.7b19081

    Article  CAS  PubMed  Google Scholar 

  112. Wang Z, Li M, Wang W, Fang M, Sun Q, Liu C (2016) Floating silver film: a flexible surface-enhanced Raman spectroscopy substrate for direct liquid phase detection at gas-liquid interfaces. Nano Res 9(4):1148–1158. https://doi.org/10.1007/s12274-016-1009-x

    Article  CAS  Google Scholar 

  113. Yang L, Li P, Liu H, Tang X, Liu J (2015) A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state. Chem Soc Rev 44(10):2837–2848. https://doi.org/10.1039/c4cs00509k

    Article  CAS  PubMed  Google Scholar 

  114. Yu F, Su M, Tian L, Wang H, Liu H (2018) Organic solvent as internal standards for quantitative and high-throughput liquid interfacial SERS analysis in complex media. Anal Chem 90(8):5232–5238. https://doi.org/10.1021/acs.analchem.8b00008

    Article  CAS  PubMed  Google Scholar 

  115. Li S-B, Li L-M, Anema JR, Ren B, Sun J-J, Tian Z-Q (2011) Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) based on gold-core silica-shell nanorods. Z Phys Chem 225(6–7):775–784. https://doi.org/10.1524/zpch.2011.0101

    Article  CAS  Google Scholar 

  116. Li S-B, Li L-M, Anema JR, Li J-F, Yang Z-L, Ren B, Sun J-J, Tian Z-Q (2011) Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) Based on gold-core silica-shell nanorods. Zeitschrift Fur Physikalische Chemie-Int J Res Phys Chem Chem Phys 225(6–7):775–783. https://doi.org/10.1524/zpch.2011.0101

    Article  CAS  Google Scholar 

  117. Zhu C, Meng G, Zheng P, Huang Q, Li Z, Hu X, Wang X, Huang Z, Li F, Wu N (2016) A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv Mater (Weinheim, Ger) 28(24):4871–4876. https://doi.org/10.1002/adma.201506251

    Article  CAS  Google Scholar 

  118. Li P, Dong R, Wu Y, Liu H, Kong L, Yang L (2014) Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides. Talanta 127:269–275. https://doi.org/10.1016/j.talanta.2014.03.075

    Article  CAS  PubMed  Google Scholar 

  119. Huang Y, Wang X, Lai K, Fan Y, Rasco BA (2020) Trace analysis of organic compounds in foods with surface-enhanced Raman spectroscopy: methodology, progress, and challenges. Compr Rev Food Sci Food Saf 19(2):622–642. https://doi.org/10.1111/1541-4337.12531

    Article  CAS  PubMed  Google Scholar 

  120. Liu B, Zhou P, Liu X, Sun X, Li H, Lin M (2013) Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Technol 6(3):710–718. https://doi.org/10.1007/s11947-011-0774-5

    Article  CAS  Google Scholar 

  121. Zhang Q, Li W, Moran C, Zeng J, Chen J, Wen L-P, Xia Y (2010) Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties. J Am Chem Soc 132(32):11372–11378. https://doi.org/10.1021/ja104931h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Uzayisenga V, Lin X-D, Li L-M, Anema JR, Yang Z-L, Huang Y-F, Lin H-X, Li S-B, Li J-F, Tian Z-Q (2012) Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Langmuir 28(24):9140–9146. https://doi.org/10.1021/la3005536

    Article  CAS  PubMed  Google Scholar 

  123. McLellan JM, Li Z-Y, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7(4):1013–1017. https://doi.org/10.1021/nl070157q

    Article  CAS  PubMed  Google Scholar 

  124. Fang J, Yi Y, Ding B, Song X (2008) A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern. Applied Physics Letters 92(13). https://doi.org/10.1063/1.2895639

  125. Feng Y, Wang Y, Wang H, Chen T, Tay YY, Yao L, Yan Q, Li S, Chen H (2012) Engineering “hot” nanoparticles for surface-enhanced Raman scattering by embedding reporter molecules in metal layers. Small 8(2):246–251. https://doi.org/10.1002/smll.201102215

    Article  CAS  PubMed  Google Scholar 

  126. Wustholz KL, Henry A-I, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc 132(31):10903–10910. https://doi.org/10.1021/ja104174m

    Article  CAS  PubMed  Google Scholar 

  127. Gong TX, Huang YF, Wei ZJ, Huang W, Wei XB, Zhang XS (2020) Magnetic assembled 3D SERS substrate for sensitive detection of pesticide residue in soil. Nanotechnology 31(20):8. https://doi.org/10.1088/1361-6528/ab72b7

    Article  CAS  Google Scholar 

  128. Liang X, Liang B, Pan Z, Lang X, Zhang Y, Wang G, Yin P, Guo L (2015) Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale 7(47):20188–20196. https://doi.org/10.1039/c5nr06010a

    Article  CAS  PubMed  Google Scholar 

  129. Ji W, Zhao B, Ozaki Y (2016) Semiconductor materials in analytical applications of surface-enhanced Raman scattering. J Raman Spectrosc 47(1):51–58. https://doi.org/10.1002/jrs.4854

    Article  CAS  Google Scholar 

  130. Bernat A, Samiwala M, Albo J, Jiang X, Rao Q (2019) Challenges in SERS-based pesticide detection and plausible solutions. J Agric Food Chem 67(45):12341–12347. https://doi.org/10.1021/acs.jafc.9b05077

    Article  CAS  PubMed  Google Scholar 

  131. Chan MY, Leng W, Vikesland PJ (2018) Surface-enhanced Raman spectroscopy characterization of salt-induced aggregation of gold nanoparticles. ChemPhysChem 19(1):24–28. https://doi.org/10.1002/cphc.201700798

    Article  CAS  PubMed  Google Scholar 

  132. Krajczewski J, Kudelski A (2019) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Frontiers in Chemistry 7. https://doi.org/10.3389/fchem.2019.00410

  133. Keating M, Chen Y, Larmour I A, Faulds K, Graham D (2012) Growth and surface-enhanced Raman scattering of Ag nanoparticle assembly in agarose gel. Measurement Science and Technology 23(8). https://doi.org/10.1088/0957-0233/23/8/084006

  134. Gao R, Choi N, Chang SI, Kang SH, Song JM, Cho SI, Lim DW, Choo J (2010) Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal Chim Acta 681(1–2):87–91. https://doi.org/10.1016/j.aca.2010.09.036

    Article  CAS  PubMed  Google Scholar 

  135. Chen Y, Liu H, Tian Y, Du Y, Ma Y, Zeng S, Gu C, Jiang T, Zhou J (2020) In situ recyclable surface-enhanced Raman scattering-based detection of multicomponent pesticide residues on fruits and vegetables by the flower-like MoS2@Ag hybrid substrate. ACS Appl Mater Interfaces 12(12):14386–14399. https://doi.org/10.1021/acsami.9b22725

    Article  CAS  PubMed  Google Scholar 

  136. Zhang YZ, Wang ZY, Wu L, Pei YW, Chen P, Cui YP (2014) Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst 139(20):5148–5154. https://doi.org/10.1039/c4an00771a

    Article  CAS  PubMed  Google Scholar 

  137. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20(11):3096–3102. https://doi.org/10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  138. Suzuki S, Yoshimura M (2017) Chemical stability of graphene coated silver substrates for surface-enhanced Raman scattering. Sci Rep 7. https://doi.org/10.1038/s41598-017-14782-2

  139. Zhu T, Wang H, Zang L, Jin S, Guo S, Park E, Mao Z, Jung Y M (2020) Flexible and reusable Ag coated TiO2 nanotube arrays for highly sensitive SERS detection of formaldehyde. Molecules (Basel, Switzerland) 25(5). https://doi.org/10.3390/molecules25051199

  140. Yang K-H, Liu Y-C, Hsu T-C, Juang M-Y (2010) Strategy to improve stability of surface-enhanced raman scattering-active Ag substrates. J Mater Chem 20(35):7530–7535. https://doi.org/10.1039/c0jm00814a

    Article  CAS  Google Scholar 

  141. Liu C, Xu X, Wang C, Qiu G, Ye W, Li Y, Wang D (2020) ZnO/Ag nanorods as a prominent SERS substrate contributed by synergistic charge transfer effect for simultaneous detection of oral antidiabetic drugs pioglitazone and phenformin. Sensors Actuators B Chem 307. https://doi.org/10.1016/j.snb.2019.127634

  142. Nguyen M-K, Su W-N, Chen C-H, Rick J, Hwang B-J (2017) Highly sensitive and stable Ag@SiO2 nanocubes for label-free SERS-photoluminescence detection of biomolecules. Spectrochim Acta A Mol Biomol Spectrosc 175:239–245. https://doi.org/10.1016/j.saa.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  143. Chen L, Guo S, Dong L, Zhang F, Gao R, Liu Y, Wang Y, Zhang Y (2019) SERS effect on the presence and absence of rGO for Ag@Cu2O core-shell. Mater Sci Semicond Process 91:290–295. https://doi.org/10.1016/j.mssp.2018.11.038

    Article  CAS  Google Scholar 

  144. Zhou Y, Liang P, Zhang D, Tang L, Dong Q, Jin S, Ni D, Yu Z, Ye J (2020) A facile seed growth method to prepare stable Ag@ZrO2 core-shell SERS substrate with high stability in extreme environments. Spectrochim Acta A Mol Biomol Spectrosc 228. https://doi.org/10.1016/j.saa.2019.117676

  145. Ouyang L, Dai P, Yao L, Zhou Q, Tang H, Zhu L (2019) A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring. Analyst 144(18):5528–5537. https://doi.org/10.1039/c9an01123d

    Article  CAS  PubMed  Google Scholar 

  146. Xie J, Li L, Khan I M, Wang Z, Ma X (2020) Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy 231. https://doi.org/10.1016/j.saa.2020.118104

  147. Gong X, Tang M, Gong Z, Qiu Z, Wang D, Fan M (2019) Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling. Food Chem 295:254–258. https://doi.org/10.1016/j.foodchem.2019.05.127

    Article  CAS  PubMed  Google Scholar 

  148. Jalaja K, Bhuvaneswari S, Ganiga M, Divyamol R, Anup S, Cyriac J, George BK (2017) Effective SERS detection using a flexible wiping substrate based on electrospun polystyrene nanofibers. Anal Methods 9(26):3998–4003. https://doi.org/10.1039/c7ay00882a

    Article  CAS  Google Scholar 

  149. Sun J, Gong L, Lu Y, Wang D, Gong Z, Fan M (2018) Dual functional PDMS sponge SERS substrate for the on-site detection of pesticides both on fruit surfaces and in juice. Analyst 143(11):2689–2695. https://doi.org/10.1039/c8an00476e

    Article  CAS  PubMed  Google Scholar 

  150. Fan M, Zhang Z, Hu J, Cheng F, Wang C, Tang C, Lin J, Brolo AG, Zhan H (2014) Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling. Mater Lett 133:57–59. https://doi.org/10.1016/j.matlet.2014.06.178

    Article  CAS  Google Scholar 

  151. Wu H, Luo Y, Hou C, Huo D, Zhou Y, Zou S, Zhao J, Lei Y (2019) Flexible bipyramid-AuNPs based SERS tape sensing strategy for detecting methyl parathion on vegetable and fruit surface. Sensors Actuators B Chem 285:123–128. https://doi.org/10.1016/j.snb.2019.01.038

    Article  CAS  Google Scholar 

  152. Zhang C-y, Hao R, Zhao B, Fu Y, Zhang H, Moeendarbari S, Pickering CS, Hao Y-w, Liu Y-q (2017) Graphene oxide-wrapped flower-like sliver particles for surface-enhanced Raman spectroscopy and their applications in polychlorinated biphenyls detection. Appl Surf Sci 400:49–56. https://doi.org/10.1016/j.apsusc.2016.12.161

    Article  CAS  Google Scholar 

  153. Zhou X, Liu G, Zhang H, Li Y, Cai W (2019) Porous zeolite imidazole framework-wrapped urchin-like Au-Ag nanocrystals for SERS detection of trace hexachlorocyclohexane pesticides via efficient enrichment. J Hazard Mater 368:429–435. https://doi.org/10.1016/j.jhazmat.2019.01.070

    Article  CAS  PubMed  Google Scholar 

  154. Gao S, Zhang Z, He L (2016) Filter-based surface-enhanced Raman spectroscopy for rapid and sensitive detection of the fungicide ferbam in water. Int J Environ Anal Chem 96(15):1495–1506. https://doi.org/10.1080/03067319.2016.1272677

    Article  CAS  Google Scholar 

  155. Wang W, Xu M, Guo Q, Yuan Y, Gu R, Yao J (2015) Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy. RSC Adv 5(59):47640–47646. https://doi.org/10.1039/c5ra05562h

    Article  CAS  Google Scholar 

  156. Kong X, Yu Q, Li E, Wang R, Liu Q, Wang A X (2018) Diatomite Photonic Crystals for Facile On-Chip Chromatography and Sensing of Harmful Ingredients from Food. Materials 11(4). https://doi.org/10.3390/ma11040539

  157. Zhou Z, Lu J, Wang J, Zou Y, Liu T, Zhang Y, Liu G, Tian Z (2020) Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS. Spectrochim Acta A Mol Biomol Spectrosc 234:118250. https://doi.org/10.1016/j.saa.2020.118250

    Article  CAS  PubMed  Google Scholar 

  158. Zhu J, Chen Q, Kutsanedzie FYH, Yang M, Ouyang Q, Jiang H (2017) Highly sensitive and label-free determination of thiram residue using surface-enhanced Raman spectroscopy (SERS) coupled with paper-based microfluidics. Anal Methods 9(43):6186–6193. https://doi.org/10.1039/c7ay01637a

    Article  CAS  Google Scholar 

  159. Chen Z, Li G, Zhang Z (2019) Miniaturized array gas membrane separation strategy for rapid analysis of complex samples by surface-enhanced Raman scattering. Anal Chim Acta 1065:29–39. https://doi.org/10.1016/j.aca.2019.03.031

    Article  CAS  PubMed  Google Scholar 

  160. Li D, Duan H, Wang Y, Zhang Q, Cao H, Deng W, Li D (2018) On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. Microchimica Acta 185(1). https://doi.org/10.1007/s00604-017-2580-x

  161. Fang L, Liao X, Jia B, Shi L, Kang L, Zhou L, Kong W (2020) Recent progress in immunosensors for pesticides. Biosens Bioelectron 164. https://doi.org/10.1016/j.bios.2020.112255

  162. Hassanain WA, Izake EL, Sivanesan A, Ayoko GA (2017) Towards interference free HPLC-SERS for the trace analysis of drug metabolites in biological fluids. J Pharm Biomed Anal 136:38–43. https://doi.org/10.1016/j.jpba.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  163. Nie Y, Teng Y, Li P, Liu W, Shi Q, Zhang Y (2017) Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering. Spectrochim Acta A Mol Biomol Spectrosc 191:271–276. https://doi.org/10.1016/j.saa.2017.10.030

    Article  CAS  PubMed  Google Scholar 

  164. Zhou Z, Lu J, Wang J, Zou Y, Liu T, Zhang Y, Liu G, Tian Z (2020) Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS. Spectrochim Acta A Mol Biomol Spectrosc 234. https://doi.org/10.1016/j.saa.2020.118250

  165. Guo X, Li J, Arabi M, Wang X, Wang Y, Chen L (2020) Molecular-imprinting-based surface-enhanced Raman scattering sensors. Acs Sensors 5(3):601–619. https://doi.org/10.1021/acssensors.9b02039

    Article  CAS  PubMed  Google Scholar 

  166. Yazdi SH, White IM (2012) Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants. Anal Chem 84(18):7992–7998. https://doi.org/10.1021/ac301747b

    Article  CAS  PubMed  Google Scholar 

  167. Zhu C, Meng G, Huang Q, Li Z, Huang Z, Wang M, Yuan J (2012) Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs. J Mater Chem 22(5):2271–2278. https://doi.org/10.1039/c2jm14823d

    Article  CAS  Google Scholar 

  168. Lacharmoise PD, Le Ru EC, Etchegoin PG (2009) Guiding Molecules With Electrostatic Forces in Surface Enhanced Raman Spectroscopy. ACS Nano 3(1):66–72. https://doi.org/10.1021/nn800710m

    Article  CAS  PubMed  Google Scholar 

  169. Ji Y, Dong J-C, Kumar VV, Li J-F, Tian Z-Q (2017) Probing electrochemical interfaces using shell-isolated nanoparticles-enhanced Raman spectroscopy. Curr Opin Electrochem 1(1):16–21. https://doi.org/10.1016/j.coelec.2016.12.009

    Article  CAS  Google Scholar 

  170. Cheshari E C, Ren X H, Li X Core-shell Ag-molecularly imprinted composite for SERS detection of carbendazim. Int J Environ Anal Chem:14. https://doi.org/10.1080/03067319.2019.1651301

  171. Li HJ, Wang XN, Wang ZR, Wang Y, Dai JD, Gao L, Wei MB, Yan YS, Li CX (2018) A polydopamine-based molecularly imprinted polymer on nanoparticles of type SiO2@rGO@Ag for the detection of lambda-cyhalothrin via SERS. Microchim Acta 185(3):10. https://doi.org/10.1007/s00604-017-2604-6

    Article  CAS  Google Scholar 

  172. Nie Y, Teng Y, Li P, Liu W, Shi Q, Zhang Y (2018) Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering. Spectrochim Acta A Mol Biomol Spectrosc 191:271–276. https://doi.org/10.1016/j.saa.2017.10.030

    Article  CAS  PubMed  Google Scholar 

  173. Fang L, Liao XF, Jia BY, Shi LC, Kang LZ, Zhou LD, Kong WJ (2020) Recent progress in immunosensors for pesticides. Biosens Bioelectron 164:17. https://doi.org/10.1016/j.bios.2020.112255

    Article  CAS  Google Scholar 

  174. Dendisova-Vyskovska M, Kokaislova A, Oncak M, Matejka P (2013) SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach. J Mol Struct 1038:19–28. https://doi.org/10.1016/j.molstruc.2013.01.023

    Article  CAS  Google Scholar 

  175. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287):392–395. https://doi.org/10.1038/nature08907

    Article  CAS  PubMed  Google Scholar 

  176. Wu P, Zhong L-B, Liu Q, Zhou X, Zheng Y-M (2019) Polymer induced one-step interfacial self-assembly method for the fabrication of flexible, robust and free-standing SERS substrates for rapid on-site detection of pesticide residues. Nanoscale 11(27):12829–12836. https://doi.org/10.1039/c9nr02851j

    Article  CAS  PubMed  Google Scholar 

  177. Albuquerque CDL, Nogueira RB, Poppi RJ (2016) Determination of 17 beta-estradiol and noradrenaline in dog serum using surface-enhanced Raman spectroscopy and random Forest. Microchem J 128:95–101. https://doi.org/10.1016/j.microc.2016.04.012

    Article  CAS  Google Scholar 

  178. Xu N, Liu M-H, Yuan H-C, Huang S-G, Wang X, Zhao J-H, Chen J, Wang T, Hu W, Song Y-X (2020) Classification of sulfadimidine and sulfapyridine in duck meat by surface enhanced Raman Spectroscopy Combined with Principal Component Analysis and Support Vector Machine. Anal Lett 53(10):1513–1524. https://doi.org/10.1080/00032719.2019.1710524

    Article  CAS  Google Scholar 

  179. Mazivila SJ, Nogueira HIS, Pascoa R, Ribeiro DSM, Santos JLM, Leitao JMM, da Silva J (2020) Portable and benchtop Raman spectrometers coupled to cluster analysis to identify quinine sulfate polymorphs in solid dosage forms and antimalarial drug quantification in solution by AuNPs-SERS with MCR-ALS. Anal Methods 12(18):2407–2421. https://doi.org/10.1039/d0ay00693a

    Article  CAS  PubMed  Google Scholar 

  180. Hu J, Zhang D, Zhao H, Sun B, Liang P, Ye J, Yu Z, Jin S (2021) Intelligent spectral algorithm for pigments visualization, classification and identification based on Raman spectra. Spectrochim Acta A Mol Biomol Spectrosc 250. https://doi.org/10.1016/j.saa.2020.119390

  181. Shi H, Wang H, Meng X, Chen R, Zhang Y, Su Y, He Y (2018) Setting up a surface-enhanced Raman scattering database for artificial-intelligence-based label-free discrimination of tumor suppressor genes. Anal Chem 90(24):14216–14221. https://doi.org/10.1021/acs.analchem.8b03080

    Article  CAS  PubMed  Google Scholar 

  182. Zhu J, Sharma A S, Xu J, Xu Y, Jiao T, Ouyang Q, Li H, Chen Q (2021) Rapid on-site identification of pesticide residues in tea by one-dimensional convolutional neural network coupled with surface-enhanced Raman scattering. Spectrochim Acta A Mol Biomol Spectrosc 246. https://doi.org/10.1016/j.saa.2020.118994

  183. Janci T, Valinger D, Kljusuric JG, Mikac L, Vidacek S, Ivanda M (2017) Determination of histamine in fish by surface enhanced Raman spectroscopy using silver colloid SERS substrates. Food Chem 224:48–54. https://doi.org/10.1016/j.foodchem.2016.12.032

    Article  CAS  PubMed  Google Scholar 

  184. Guselnikova O, Trelin A, Skvortsova A, Ulbrich P, Postnikov P, Pershina A, Sykora D, Svorcik V, Lyutakov O (2019) Label-free surface-enhanced Raman spectroscopy with artificial neural network technique for recognition photoinduced DNA damage. Biosens Bioelectron 145. https://doi.org/10.1016/j.bios.2019.111718

  185. Matikainen A, Nuutinen T, Itkonen T, Heinilehto S, Puustinen J, Hiltunen J, Lappalainen J, Karioja P, Vahimaa P (2016) Atmospheric oxidation and carbon contamination of silver and its effect on surface-enhanced Raman spectroscopy (SERS). Sci Rep 6:6. https://doi.org/10.1038/srep37192

    Article  CAS  Google Scholar 

  186. Tan ZL, Mak MW, Mak BKW (2018) DNN-Based Score Calibration With Multitask Learning for Noise Robust Speaker Verification. IEEE-ACM Trans Audio Speech Lang 26(4):700–712. https://doi.org/10.1109/taslp.2018.2791105

    Article  Google Scholar 

  187. Weatherston JD, Worstell NC, Wu HJ (2016) Quantitative surface-enhanced Raman spectroscopy for kinetic analysis of aldol condensation using Ag-Au core-shell nanocubes. Analyst 141(21):6051–6060. https://doi.org/10.1039/c6an01098a

    Article  CAS  PubMed  Google Scholar 

  188. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15(1–2):16–25. https://doi.org/10.1016/s1369-7021(12)70017-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project is financially supported by Premaintenance Youth Science Funds of Zhejiang Province (No.LR19F050001), National Key Research and Development Program project (No. 2017YFD040800). My gratitude also goes to Dr. Liang Pei for his support of National Demonstration Base for Micro/nano-fabrication & Optoelectronic Detection and International Science and Technology Cooperation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Liang or Zhi Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Liang, P., Chen, W. et al. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy. Microchim Acta 188, 370 (2021). https://doi.org/10.1007/s00604-021-05025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05025-3

Keywords

Navigation