Skip to main content
Log in

Fluorescent enzyme-linked immunosorbent assay based on alkaline phosphatase-responsive coordination polymer composite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The fabrication of alkaline phosphatase (ALP)-responsive coordination polymer (CP) composite is demonstrated for establishing a fluorescent immunoassay. The CP composite (ThT@GMP/Eu) was synthesized by encapsulating thioflavin T (ThT) into the CP host that was composed of europium ion (Eu3+) and guanine monophosphate (GMP). The ThT@GMP/Eu composite shows a strong fluorescence in aqueous solution due to the confinement effect of GMP/Eu CPs, which restricts the conformational rotation of ThT. However, upon the addition of ALP, the structure of GMP/Eu CPs was disrupted to release ThT into solution. This results in the quenching of the fluorescence of ThT@GMP/Eu. The fluorescence of ThT@GMP/Eu has a linear response that covers 0.8 to 120 mU/mL ALP with a detection limit of 0.26 mU/mL and exhibits excellent specificity towards ALP against other enzymes. On this basis, inspired by the wide application of ALP as an enzyme label in enzyme-linked immunosorbent assay (ELISA), an ALP-based fluorescent immunoassay was further developed for the detection of mouse immunoglobulin G (mIgG). The developed immunoassay displays a linear fluorescent response towards mIgG from 0.8 to 100 ng/mL, and the detection limit is 0.16 ng/mL. The fluorescent immunoassay was successfully applied to the determination of mIgG in serum samples.

Graphical abstract

Schematic of the responsivity of ThT@GMP/Eu to ALP that hydrolyzes GMP to release ThT, which leads to fluorescent quenching, and its application in the construction of a fluorescent immunoassay for mIgG determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang X, Niessner R, Tang D, Knopp D (2016) Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 912:10–23

    Article  CAS  PubMed  Google Scholar 

  2. Pierangeli SS, Harris EN (2008) A protocol for determination of anticardiolipin antibodies by ELISA. Nat Protoc 3:840–848

    Article  CAS  PubMed  Google Scholar 

  3. Wang Z, Chen Q, Zhong Y, Yu X, Wu Y, Fu F (2020) A multicolor immunosensor for sensitive visual detection of breast cancer biomarker based on sensitive NADH-ascorbic-acid-mediated growth of gold nanobipyramids. Anal Chem 92:1534–1540

    Article  CAS  PubMed  Google Scholar 

  4. Anderson GP, Lamar JD, Charles PT (2007) Development of a luminex based competitive immunoassay for 2,4,6-trinitrotoluene (TNT). Environ Sci Technol 41:2888–2893

    Article  CAS  PubMed  Google Scholar 

  5. Lai W, Tang D, Zhuang J, Chen G, Yang H (2014) Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate. Anal Chem 86:5061–5068

    Article  CAS  PubMed  Google Scholar 

  6. Sun J, Hu T, Chen C, Zhao D, Yang F, Yang X (2016) Fluorescence immunoassay system via enzyme-enabled in situ synthesis of fluorescent silicon nanoparticles. Anal Chem 88:9789–9795

    Article  CAS  PubMed  Google Scholar 

  7. Han J, Zhang M, Chen G, Zhang Y, Wei Q, Zhuo Y, Xie G, Yuan R, Chen S (2017) Ferrocene covalently confined in porous MOF as signal tag for highly sensitive electrochemical immunoassay of amyloid-β. J Mater Chem B 5:8330–8336

    Article  CAS  PubMed  Google Scholar 

  8. Yang L, Zhen SJ, Li YF, Huang CZ (2018) Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker. Nanoscale 10:11942–11947

    Article  CAS  PubMed  Google Scholar 

  9. Yang X, Guo Y, Wang A (2010) Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen. Anal Chim Acta 666:91–96

    Article  CAS  PubMed  Google Scholar 

  10. Zhu L, Cui X, Wu J, Wang Z, Wang P, Hou Y, Yang M (2014) Fluorescence immunoassay based on carbon dots as labels for the detection of human immunoglobulin G. Anal Methods 6:4430–4436

    Article  CAS  Google Scholar 

  11. Cui R, Pan H-C, Zhu J-J, Chen H-Y (2007) Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal Chem 79:8494–8501

    Article  CAS  PubMed  Google Scholar 

  12. Liu L, Wu S, Jing F, Zhou H, Jia C, Li G, Cong H, Jin Q, Zhao J (2016) Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels. Biosens Bioelectron 80:300–306

    Article  CAS  PubMed  Google Scholar 

  13. Lores-Padín A, Cruz-Alonso M, González-Iglesias H, Fernández B, Pereiro R (2019) Bimodal determination of immunoglobulin E by fluorometry and ICP-MS by using platinum nanoclusters as a label in an immunoassay. Microchim Acta 186:705

    Article  CAS  Google Scholar 

  14. Valencia E, Cruz-Alonso M, Álvarez L, González-Iglesias H, Fernández B, Pereiro R (2019) Fluorescent silver nanoclusters as antibody label in a competitive immunoassay for the complement factor H. Microchim Acta 186:429

    Article  CAS  Google Scholar 

  15. Li R, Liu Q, Jin Y, Li B (2019) Fluorescent enzyme-linked immunoassay strategy based on enzyme-triggered in-situ synthesis of fluorescent copper nanoclusters. Sensors Actuators B-Chem 281:28–33

    Article  CAS  Google Scholar 

  16. Sun J, Hu T, Xu X, Wang L, Yang X (2016) A fluorescent ELISA based on the enzyme-triggered synthesis of poly(thymine)-templated copper nanoparticles. Nanoscale 8:16846–16850

    Article  CAS  PubMed  Google Scholar 

  17. Zhao D, Li J, Peng C, Zhu S, Sun J, Yang X (2019) Fluorescence immunoassay based on the alkaline phosphatase triggered in situ fluorogenic reaction of o-phenylenediamine and ascorbic acid. Anal Chem 91:2978–2984

    Article  CAS  PubMed  Google Scholar 

  18. Lopez A, Liu J (2017) Self-assembly of nucleobase, nucleoside and nucleotide coordination polymers: from synthesis to applications. ChemNanoMat 3:670–684

    Article  CAS  Google Scholar 

  19. Novio F, Simmchen J, Vázquez-Mera N, Amorín-Ferré L, Ruiz-Molina D (2013) Coordination polymer nanoparticles in medicine. Coord Chem Rev 257:2839–2847

    Article  CAS  Google Scholar 

  20. Zhou Z, He C, Yang L, Wang Y, Liu T, Duan C (2017) Alkyne activation by a porous silver coordination polymer for heterogeneous catalysis of carbon dioxide cycloaddition. ACS Catal 7:2248–2256

    Article  CAS  Google Scholar 

  21. Deng J, Wu F, Yu P, Mao L (2018) On-site sensors based on infinite coordination polymer nanoparticles: recent progress and future challenge. Appl Mater Today 11:338–351

    Article  Google Scholar 

  22. Zhang M, Z-b Q, Han C-M, Lu L-F, Li Y-Y, Zhou T, Shi G (2014) Time-resolved probes and oxidase-based biosensors using terbium(III)-guanosine monophosphate-mercury(II) coordination polymer nanoparticles. Chem Commun 50:12855–12858

    Article  CAS  Google Scholar 

  23. Zhao J, Yang Y, Han X, Liang C, Liu J, Song X, Ge Z, Liu Z (2017) Redox-sensitive nanoscale coordination polymers for drug delivery and cancer theranostics. ACS Appl Mater Interfaces 9:23555–23563

    Article  CAS  PubMed  Google Scholar 

  24. Xing L, Cao Y, Che S (2012) Synthesis of core-shell coordination polymer nanoparticles (CPNs) for pH-responsive controlled drug release. Chem Commun 48:5995–5997

    Article  CAS  Google Scholar 

  25. Taylor-Pashow KML, Rocca JD, Xie Z, Tran S, Lin W (2009) Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc 131:14261–14263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huxford RC, deKrafft KE, Boyle WS, Liu D, Lin W (2012) Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem Sci 3:198–204

    Article  CAS  Google Scholar 

  27. Gao J, Wang C, Tan H (2017) Dual-emissive polystyrene@zeolitic imidazolate framework-8 composite for ratiometric detection of singlet oxygen. J Mater Chem B 5:9175–9182

    Article  CAS  PubMed  Google Scholar 

  28. Lin X, Gao G, Zheng L, Chi Y, Chen G (2014) Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal Chem 86:1223–1228

    Article  CAS  PubMed  Google Scholar 

  29. Gao J, Wang C, Tan H (2017) Lanthanide/nucleotide coordination polymer: an excellent host platform for encapsulating of enzymes and fluorescent nanoparticles to enhance ratiometric sensing. J Mater Chem B 5:7692–7700

    Article  CAS  PubMed  Google Scholar 

  30. Sun C, Shi Y, Tang M, Hu X, Long Y, Zheng H (2020) A signal amplification strategy for prostate specific antigen detection via releasing oxidase-mimics from coordination nanoparticles by alkaline phosphatase. Talanta 213:120827

    Article  CAS  PubMed  Google Scholar 

  31. Ma Y, Xu G, Wei F, Cen Y, Xu X, Shi M, Cheng X, Chai Y, Sohail M, Hu Q (2018) One-pot synthesis of a magnetic, ratiometric fluorescent nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine B modified carbon dots in metal-organic framework for enhanced HClO sensing. ACS Appl Mater Interfaces 10:20801–20805

    Article  CAS  PubMed  Google Scholar 

  32. Li Y-Y, Zhang M, Lu L-F, Zhu A, Xia F, Zhou T, Shi G (2015) Ratiometric fluorescence detection of silver ions using thioflavin T-based organic/inorganic hybrid supraparticles. Analyst 140:6108–6113

    Article  CAS  PubMed  Google Scholar 

  33. Li Y-Y, Jiang X-Q, Zhang M, Shi G (2016) A visual and reversible assay for temperature using thioflavin T-doped lanthanide/nucleotide coordination polymers. Analyst 141:2347–2350

    Article  CAS  PubMed  Google Scholar 

  34. Gardas A, Lewartowska A (1988) Coating of proteins to polystyrene ELISA plates in the presence of detergents. J Immunol Methods 106:251–255

    Article  CAS  PubMed  Google Scholar 

  35. Wu S, Tan H, Wang C, Wang J, Sheng S (2019) A colorimetric immunoassay based on coordination polymer composite for the detection of carcinoembryonic antigen. ACS Appl Mater Interfaces 11:43031–43038

    Article  CAS  PubMed  Google Scholar 

  36. Weng Y, Zhu Q, Huang Z-Z, Tan H (2020) Time-resolved fluorescence detection of superoxide anions based on an enzyme-integrated lanthanide coordination polymer composite. ACS Appl Mater Interfaces 12:30882–30889

    Article  CAS  PubMed  Google Scholar 

  37. Pu F, Wu L, Ju E, Ran X, Ren J, Qu X (2014) Artificial light-harvesting material based on self-assembly of coordination polymer nanoparticles. Adv Funct Mater 24:4549–4555

    Article  CAS  Google Scholar 

  38. Pu F, Ran X, Ren J, Qu X (2016) Artificial tongue based on metal-biomolecule coordination polymer nanoparticles. Chem Commun 52:3410–3413

  39. Mohanty J, Barooah N, Dhamodharan V, Harikrishna S, Pradeepkumar PI, Bhasikuttan AC (2013) Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J Am Chem Soc 135:367–376

    Article  CAS  PubMed  Google Scholar 

  40. Deng J, Yu P, Wang Y, Mao L (2015) Real-time ratiometric fluorescent assay for alkaline ohosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal Chem 87:3080–3086

    Article  CAS  PubMed  Google Scholar 

  41. Tan H, Chen Y (2011) Ag+-enhanced fluorescence of lanthanide/nucleotide coordination polymers and Ag+ sensing. Chem Commun 47:12373–12375

    Article  CAS  Google Scholar 

  42. Ma C, Tan H, Chen L, Song Y, Xu F, Chen S, Wang L (2014) A terbium chelate based fluorescent assay for alkaline phosphatase in biological fluid. Sensors Actuators B-Chem 202:683–689

    Article  CAS  Google Scholar 

  43. Chen C, Zhao D, Wang B, Ni P, Jiang Y, Zhang C, Yang F, Lu Y, Sun J (2020) Alkaline phosphatase-triggered in situ formation of silicon-containing nanoparticles for a fluorometric and colorimetric dual-channel immunoassay. Anal Chem 92:4639–4646

    Article  CAS  PubMed  Google Scholar 

  44. Chen Z, Liu S, Yu X, Hao L, Wang L, Liu S (2019) Responsive methylene blue release from lanthanide coordination polymer for label-free, immobilization-free and sensitive electrochemical alkaline phosphatase activity assay. Analyst 144:5971–5979

    Article  CAS  PubMed  Google Scholar 

  45. Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Bioph Biom 21:441–483

    Article  CAS  Google Scholar 

  46. Ooi K, Shiraki K, Morishita Y, Nobori T (2007) High-molecular intestinal alkaline phosphatase in chronic liver diseases. J Clin Lab Anal 21:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lorente JA, Valenzuela H, Morote J, Gelabert A (1999) Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur J Nucl Med 26:625–632

    Article  CAS  PubMed  Google Scholar 

  48. Gonzalez-Quintela A, Alende R, Gude F, Campos J, Rey J, Meijide LM, Fernandez-Merino C, Vidal C (2008) Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin Exp Immunol 151:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Gill AD, Duan Y, Perez L, Hooley RJ, Zhong W (2019) A supramolecular sensor array for selective immunoglobulin deficiency analysis. Chem Commun 55:11563–11566

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (21765010 and 22064011) and Natural Science Foundation of Jiangxi Province (20192BAB203010 and 20202ACB205003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Hu, X., Li, Y. et al. Fluorescent enzyme-linked immunosorbent assay based on alkaline phosphatase-responsive coordination polymer composite. Microchim Acta 188, 263 (2021). https://doi.org/10.1007/s00604-021-04920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04920-z

Keywords

Navigation