Skip to main content

Advertisement

Log in

Transition metal dichalcogenides to optimize the performance of peptide-imprinted conductive polymers as electrochemical sensors

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Molecularly imprinted polymer (MIP)-based electrochemical sensors for the protein α-synuclein (a marker for Parkinson’s disease) were developed using a peptide epitope from the protein. MIPs doped with various concentrations and species of transition metal dichalcogenides (TMDs) to enhance conductivity were electropolymerized with and without template molecules. The current during the electropolymerization was compared with that associated with the electrochemical response (at 0.24~0.29 V vs. ref. electrode) to target peptide molecules in the finished sensor. We found that this relationship can aid in the rational design of conductive MIPs for the recognition of biomarkers in biological fluids. The sensing range and limit of detection of TMD-doped imprinted poly(AN-co-MSAN)-coated electrodes were 0.001–100 pg/mL and 0.5 fg/mL (SNR = 3), respectively. To show the potential applicability of the MIP electrochemical sensor, cell culture medium from PD patient–specific midbrain organoids generated from induced pluripotent stem cells was analyzed. α-Synuclein levels were found to be significantly reduced in the organoids from PD patients, compared to those generated from age-matched controls. The relative standard deviation and recovery are less than 5% and 95–115%, respectively.

Graphical abstract

Preparation of TMD-doped α-synuclein (SNCA) peptide-imprinted poly(AN-co-MSAN)-coated electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lee M-H, Thomas JL, Su Z-L, Zhang Z-X, Lin C-Y, Huang Y-S, Yang C-H, Lin H-Y (2020) Doping of transition metal dichalcogenides in molecularly imprinted conductive polymers for the ultrasensitive determination of 17β-estradiol in eel serum. Biosens Bioelectron 150:111901. https://doi.org/10.1016/j.bios.2019.111901

    Article  CAS  PubMed  Google Scholar 

  2. Lee M-H, Thomas JL, Chang Y-C, Tsai Y-S, Liu B-D, Lin H-Y (2016) Electrochemical sensing of nuclear matrix protein 22 in urine with molecularly imprinted poly (ethylene-co-vinyl alcohol) coated zinc oxide nanorod arrays for clinical studies of bladder cancer diagnosis. Biosens Bioelectron 79:789–795

    Article  Google Scholar 

  3. Piletsky S, Canfarotta F, Poma A, Bossi AM, Piletsky S (2020) Molecularly imprinted polymers for cell recognition. Trends Biotechnol 38(4):368–387

    Article  CAS  Google Scholar 

  4. Lee M-H, Thomas JL, Tseng H-Y, Lin W-C, Liu B-D, Lin H-Y (2011) Sensing of digestive proteins in saliva with a molecularly imprinted poly(ethylene-co-vinyl alcohol) thin film coated quartz crystal microbalance sensor. ACS Appl Mater Interfaces 3(8):3064–3071. https://doi.org/10.1021/am2005724

    Article  CAS  PubMed  Google Scholar 

  5. Lee M-H, Thomas JL, Liao C-L, Jurcevic S, Crnogorac-Jurcevic T, Lin H-Y (2018) Epitope recognition of peptide-imprinted polymers for regenerating protein 1 (REG1). Sep Purif Technol 192:213–219

    Article  CAS  Google Scholar 

  6. Qin Y-P, Jia C, He X-W, Li W-Y, Zhang Y-K (2018) Thermosensitive metal chelation dual-template epitope imprinting polymer using distillation–precipitation polymerization for simultaneous recognition of human serum albumin and transferrin. ACS Appl Mater Interfaces 10(10):9060–9068

    Article  CAS  Google Scholar 

  7. Lee M-H, Thomas JL, Liao C-L, Jurcevic S, Crnogorac-Jurcevic T, Lin H-Y (2017) Polymers imprinted with three REG1B peptides for electrochemical determination of regenerating protein 1B, a urinary biomarker for pancreatic ductal adenocarcinoma. Microchim Acta 184(6):1773–1780

    Article  CAS  Google Scholar 

  8. Lee M-H, O’Hare D, Guo H-Z, Yang C-H, Lin H-Y (2016) Electrochemical sensing of urinary progesterone with molecularly imprinted poly(aniline-co-metanilic acid)s. J Mater Chem B 4(21):3782–3787. https://doi.org/10.1039/C6TB00760K

    Article  CAS  PubMed  Google Scholar 

  9. Lee M-H, Thomas JL, Liu W-C, Zhang Z-X, Liu B-D, Yang C-H, Lin H-Y (2019) A multichannel system integrating molecularly imprinted conductive polymers for ultrasensitive voltammetric determination of four steroid hormones in urine. Microchim Acta 186(11):695. https://doi.org/10.1007/s00604-019-3797-7

    Article  CAS  Google Scholar 

  10. Hussain S, Zaidi SA, Vikraman D, Kim H-S, Jung J (2019) Facile preparation of molybdenum carbide (Mo2C) nanoparticles and its effective utilization in electrochemical sensing of folic acid via imprinting. Biosens Bioelectron 140:111330. https://doi.org/10.1016/j.bios.2019.111330

    Article  CAS  PubMed  Google Scholar 

  11. Gan X, Zhao H, Quan X (2017) Two-dimensional MoS2: a promising building block for biosensors. Biosens Bioelectron 89:56–71. https://doi.org/10.1016/j.bios.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Fang G, Wang X, Zhang F, Liu J, Zheng W, Wang S (2017) Electrochemiluminescent graphene quantum dots enhanced by MoS2 as sensing platform: a novel molecularly imprinted electrochemiluminescence sensor for 2-methyl-4-chlorophenoxyacetic acid assay. Electrochim Acta 228:107–113

    Article  CAS  Google Scholar 

  13. Usha SP, Gupta BD (2018) Urinary p-cresol diagnosis using nanocomposite of ZnO/MoS2 and molecular imprinted polymer on optical fiber based lossy mode resonance sensor. Biosens Bioelectron 101:135–145

    Article  CAS  Google Scholar 

  14. Sun Y, Xu L, Waterhouse GI, Wang M, Qiao X, Xu Z (2019) Novel three-dimensional electrochemical sensor with dual signal amplification based on MoS2 nanosheets and high-conductive NH2-MWCNT@ COF for sulfamerazine determination. Sensors Actuators B Chem 281:107–114

    Article  CAS  Google Scholar 

  15. Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399. https://doi.org/10.1101/cshperspect.a009399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jang SJ, Lee C-S, Kim TH (2020) α-Synuclein oligomer detection with aptamer switch on reduced graphene oxide electrode. Nanomaterials 10(5):832

    Article  CAS  Google Scholar 

  17. An Y, Tang L, Jiang X, Chen H, Yang M, Jin L, Zhang S, Wang C, Zhang W (2010) A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein. Chem Eur J 16(48):14439–14446

    Article  CAS  Google Scholar 

  18. An Y, Jiang X, Bi W, Chen H, Jin L, Zhang S, Wang C, Zhang W (2012) Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels. Biosens Bioelectron 32(1):224–230

    Article  CAS  Google Scholar 

  19. Xu Q, Cheng H, Lehr J, Patil AV, Davis JJ (2015) Graphene oxide interfaces in serum based autoantibody quantification. Anal Chem 87(1):346–350

    Article  CAS  Google Scholar 

  20. Karaboğa MNS, Sezgintürk MK (2019) Cerebrospinal fluid levels of alpha-synuclein measured using a poly-glutamic acid-modified gold nanoparticle-doped disposable neuro-biosensor system. Analyst 144(2):611–621

    Article  Google Scholar 

  21. Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Hassanzadeh-Khayat M, Emrani AS, Abnous K (2019) A novel electrochemical aptasensor based on nontarget-induced high accumulation of methylene blue on the surface of electrode for sensing of α-synuclein oligomer. Biosens Bioelectron 123:14–18

    Article  CAS  Google Scholar 

  22. Lee M-H, Thomas JL, Su Z-L, Yeh W-K, Monzel AS, Bolognin S, Schwamborn JC, Yang C-H, Lin H-Y (2020) Epitope imprinting of alpha-synuclein for sensing in Parkinson’s brain organoid culture medium. Biosens Bioelectron:112852

  23. Yang C-H, Huang L-R, Chih Y-K, Lin W-C, Liu F-J, Wang T-L (2007) Molecular assembled self-doped polyaniline copolymer ultra-thin films. Polymer 48(11):3237–3247. https://doi.org/10.1016/j.polymer.2007.04.013

    Article  CAS  Google Scholar 

  24. Luo SC, Thomas JL, Guo HZ, Liao WT, Lee MH, Lin HY (2017) Electrosynthesis of nanostructured, imprinted poly (hydroxymethyl 3, 4-ethylenedioxythiophene) for the ultrasensitive electrochemical detection of urinary progesterone. ChemistrySelect 2(26):7935–7939

    Article  CAS  Google Scholar 

  25. Kim JH, Yu S, Lee SW, Lee S-Y, Kim KS, Kim YA, Yang C-M (2020) Enhanced thermoelectric properties of WS2/single-walled carbon nanohorn nanocomposites. Crystals 10(2):140

    Article  CAS  Google Scholar 

  26. Hammo SM (2012) Effect of acidic dopants properties on the electrical conductivity of poly aniline. Tikrit J Pure Sci 17(2):6–10

    Google Scholar 

  27. Hantanasirisakul K, Gogotsi Y (2018) Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater 30(52):1804779. https://doi.org/10.1002/adma.201804779

    Article  CAS  Google Scholar 

  28. Berkdemir A, Gutiérrez HR, Botello-Méndez AR, Perea-López N, Elías AL, Chia C-I, Wang B, Crespi VH, López-Urías F, Charlier J-C (2013) Identification of individual and few layers of WS 2 using Raman spectroscopy. Sci Rep 3(1):1–8

    Article  Google Scholar 

  29. Yang C-H, Chih Y-K, Cheng H-E, Chen C-H (2005) Nanofibers of self-doped polyaniline. Polymer 46(24):10688–10698. https://doi.org/10.1016/j.polymer.2005.09.044

    Article  CAS  Google Scholar 

  30. Monzel AS, Smits LM, Hemmer K, Hachi S, Moreno EL, van Wuellen T, Jarazo J, Walter J, Brüggemann I, Boussaad I (2017) Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep 8(5):1144–1154

    Article  CAS  Google Scholar 

  31. Smits LM, Reinhardt L, Reinhardt P, Glatza M, Monzel AS, Stanslowsky N, Rosato-Siri MD, Zanon A, Antony PM, Bellmann J (2019) Modeling Parkinson’s disease in midbrain-like organoids. NPJ Parkinson’s Dis 5(1):1–8

    Article  Google Scholar 

  32. Eusebi P, Giannandrea D, Biscetti L, Abraha I, Chiasserini D, Orso M, Calabresi P, Parnetti L (2017) Diagnostic utility of cerebrospinal fluid α-synuclein in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 32(10):1389–1400. https://doi.org/10.1002/mds.27110

    Article  CAS  PubMed  Google Scholar 

  33. Tofoli FA, Chien HF, Barbosa ER, Pereira LV (2019) Generation of 5 hiPSC lines derived from three unrelated idiopathic Parkinson disease patients and two unrelated healthy control individuals. Stem Cell Res 41:101640. https://doi.org/10.1016/j.scr.2019.101640

    Article  CAS  PubMed  Google Scholar 

  34. Chlebanowska P, Tejchman A, Sułkowski M, Skrzypek K, Majka M (2020) Use of 3D organoids as a model to study idiopathic form of Parkinson’s disease. Int J Mol Sci 21(3):694. https://doi.org/10.3390/ijms21030694

    Article  CAS  PubMed Central  Google Scholar 

  35. Mollenhauer B, Bowman FD, Drake D, Duong J, Blennow K, El-Agnaf O, Shaw LM, Masucci J, Taylor P, Umek RM, Dunty JM, Smith CL, Stoops E, Vanderstichele H, Schmid AW, Moniatte M, Zhang J, Kruse N, Lashuel HA, Teunissen C, Schubert T, Dave KD, Hutten SJ, Zetterberg H (2019) Antibody-based methods for the measurement of α-synuclein concentration in human cerebrospinal fluid – method comparison and round robin study. J Neurochem 149(1):126–138. https://doi.org/10.1111/jnc.14569

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the Ministry of Science and Technology of ROC under Contract Nos. MOST 106-2221-E-390-013-MY3, MOST 107-2923-M-390-001-MY3, MOST 108-2923-B-390-001-MY3, and MOST 109-2314-B-390-001-MY3. The JCS lab is supported by the Fonds National de la Recherche (FNR) Luxembourg in the M-era.Net project NanoPD (INTER/MERA/17/11760144). Further work from the JCS lab was supported by the U.S. Army Medical Research Materiel Command endorsed by the U.S. Army through the Parkinson’s Research Program Investigator-Initiated Research Award under Award No. W81XWH-17-PRP-IIRA

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens C. Schwamborn, Chien-Hsin Yang or Hung-Yin Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Disclaimer

Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MH., Thomas, J.L., Su, ZL. et al. Transition metal dichalcogenides to optimize the performance of peptide-imprinted conductive polymers as electrochemical sensors. Microchim Acta 188, 203 (2021). https://doi.org/10.1007/s00604-021-04850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04850-w

Keywords

Navigation