Skip to main content

Advertisement

Log in

An ultrasensitive, homogeneous fluorescence quenching immunoassay integrating separation and detection of aflatoxin M1 based on magnetic graphene composites

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A homogeneous fluorescence quenching immunoassay is described for simultaneous separation and detection of aflatoxin M1 (AFM1) in milk. The novel assay relies on monoclonal antibody (mAb) functionalized Fe3O4 decorated reduced-graphene oxide (rGO-Fe3O4-mAb) as both capture probe and energy acceptor, combined with tetramethylrhodamine cadaverine-labeled aflatoxin B1 (AFB1-TRCA) as the energy donor. In the assay, AFB1-TRCA binds to rGO-Fe3O4-mAb in the absence of AFM1, quenching the fluorescence of TRCA by resonance energy transfer. Significantly, the immunoassay integrates sample preparation and detection into a single step, by using magnetic graphene composites to avoid washing and centrifugation steps, and the assay can be completed within 10 min. Under optimized conditions, the visual and quantitative detection limits of the assay for AFM1 were 50 and 3.8 ng L−1, respectively, which were significantly lower than those obtained by fluorescence polarization immunoassay using the same immunoreagents. Owing to its operation and highly sensitivity, the proposed assay provides a powerful tool for the detection of AFM1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tian J, Wei W, Wang J, Ji S, Chen G, Lu J (2018) Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin a. Anal Chim Acta 1000:265–272

    Article  CAS  PubMed  Google Scholar 

  2. Peltomaa R, Amaro-Torres F, Carrasco S, Orellana G, Benito-Peña E, Moreno-Bondi MC (2018) Homogeneous quenching immunoassay for fumonisin B1 based on gold nanoparticles and an epitope-mimicking yellow fluorescent protein. ACS Nano 12(11):11333–11342

    Article  CAS  PubMed  Google Scholar 

  3. Li H, Yang D, Li P, Zhang Q, Zhang W, Ding X, Mao J, Wu J (2017) Palladium nanoparticles-based fluorescence resonance energy transfer aptasensor for highly sensitive detection of aflatoxin M1 in milk. Toxins 9(10)

  4. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q (2012) Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84(14):6263–6270

    Article  CAS  PubMed  Google Scholar 

  5. Li T, Byun JY, Kim BB, Shin YB, Kim MG (2013) Label-free homogeneous FRET immunoassay for the detection of mycotoxins that utilizes quenching of the intrinsic fluorescence of antibodies. Biosens Bioelectron 42:403–408

    Article  CAS  PubMed  Google Scholar 

  6. Ma M, Wen K, Beier RC, Eremin SA, Li C, Zhang S, Shen J, Wang Z (2016) Chemiluminescence resonance energy transfer competitive immunoassay employing hapten-functionalized quantum dots for the detection of sulfamethazine. ACS Appl Mater Inter 8(28):17745–17750

    Article  CAS  Google Scholar 

  7. Yamanishi CD, Joyce Han-Ching C, Shuichi T (2015) Systems for multiplexing homogeneous immunoassays. Bioanalysis 7(12):1545–1556

    Article  CAS  PubMed  Google Scholar 

  8. Yu X, Wen K, Wang Z, Zhang X, Li C, Zhang S, Shen J (2016) A general bioluminescence resonance energy transfer homogeneous immunoassay for small molecules based on quantum dots. Anal Chem 88(7):3512–3520

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Sun DE, Liu YJ, Liu ZH (2014) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55:149–156

    Article  CAS  PubMed  Google Scholar 

  10. Li M, Cushing SK, Wang QY, Shi XD, Hornak LA, Hong ZL, Wu NQ (2011) Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J Phys Chem Lett 2(17):2125–2129

    Article  CAS  Google Scholar 

  11. Mayilo S, Kloster MA, Wunderlich M, Lutich A, Klar TA, Nichtl A, Kürzinger K, Stefani FD, Feldmann J (2009) Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett 9(12):4558–4563

    Article  CAS  PubMed  Google Scholar 

  12. Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016) Fluorometric immunoassay for detecting the plant virus citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183(7):2277–2287

    Article  CAS  Google Scholar 

  13. Huang Y, Zhao S, Liu YM, Chen J, Chen ZF, Shi M, Liang H (2012) An amplified single-walled carbon nanotube-mediated chemiluminescence turn-on sensing platform for ultrasensitive DNA detection. Chem Commun 48(75):9400–9402

    Article  CAS  Google Scholar 

  14. Long F, Zhu A, Shi H, Wang H (2014) Hapten-grafted graphene as a transducer for homogeneous competitive immunoassay of small molecules. Anal Chem 86(6):2862–2866

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Liu G, Liu W, Wang Y (2015) Turn-on fluorescence sensor for the detection of heparin based on rhodamine B-modified polyethyleneimine-graphene oxide complex. Biosens Bioelectron 64:300–305

    Article  CAS  PubMed  Google Scholar 

  16. Zhang C, Yuan Y, Zhang S, Wang Y, Liu Z (2011) Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew Chem Int Ed Engl 50(30):6851–6854

    Article  CAS  PubMed  Google Scholar 

  17. Feng D, Zhang Y, Feng T, Shi W, Li X, Ma H (2011) A graphene oxide-peptide fluorescence sensor tailor-made for simple and sensitive detection of matrix metalloproteinase 2. Chem Commun 47(38):10680–10682

    Article  CAS  Google Scholar 

  18. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed Engl 48(26):4785–4787

    Article  CAS  PubMed  Google Scholar 

  19. Gu X, Yang G, Zhang G, Zhang D, Zhu D (2011) A new fluorescence turn-on assay for trypsin and inhibitor screening based on graphene oxide. ACS Appl Mater Inter 3(4):1175–1179

    Article  CAS  Google Scholar 

  20. Li F, Chao J, Li Z, Xing S, Su S, Li X, Song S, Zuo X, Fan C, Liu B, Huang W, Wang L, Wang L (2015) Graphene oxide-assisted nucleic acids assays using conjugated polyelectrolytes-based fluorescent signal transduction. Anal Chem 87(7):3877–3883

    Article  CAS  PubMed  Google Scholar 

  21. He Y, Huang G, Cui H (2013) Quenching the chemiluminescence of acridinium ester by graphene oxide for label-free and homogeneous DNA detection. ACS Appl Mater Inter 5(21):11336–11340

    Article  CAS  Google Scholar 

  22. Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517

    Article  CAS  PubMed  Google Scholar 

  23. Yang M, Gong S (2010) Immunosensor for the detection of cancer biomarker based on percolated graphene thin film. Chem Commun 46(31):5796–5798

    Article  CAS  Google Scholar 

  24. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82(6):2341–2346

    Article  CAS  PubMed  Google Scholar 

  25. Lee JS, Joung HA, Kim MG, Park CB (2012) Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay. ACS Nano 6(4):2978–2983

    Article  CAS  PubMed  Google Scholar 

  26. Kim J, Cote LJ, Kim F, Huang J (2010) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc 132(1):260–267

    Article  CAS  PubMed  Google Scholar 

  27. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  CAS  PubMed  Google Scholar 

  28. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519

    Article  CAS  Google Scholar 

  29. Lee J, Kim J, Kim S, Min DH (2016) Biosensors based on graphene oxide and its biomedical application. Adv Drug Deliv Rev 105(Pt B):275-287

  30. Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116(18):10473–10512

    Article  CAS  PubMed  Google Scholar 

  31. Li N, Jiang HL, Wang XL, Wang X, Xu GJ, Zhang BB, Wang LJ, Zhao RS, Lin JM (2018) Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TRAC-Trend. Anal Chem 102:60–74

    CAS  Google Scholar 

  32. Ansari S (2017) Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: recent developments and trends. TRAC-Trend Anal Chem 90:89–106

    Article  CAS  Google Scholar 

  33. Chikkaveeraiah BV, Mani V, Patel V, Gutkind JS, Rusling JF (2011) Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens Bioelectron 26(11):4477–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Otieno BA, Krause CE, Rusling JF (2016) Bioconjugation of antibodies and enzyme labels onto magnetic beads. Methods Enzymol 571:135–150

    Article  CAS  PubMed  Google Scholar 

  35. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6(8):6546–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao M, Deng C, Zhang X (2013) Synthesis of polydopamine-coated magnetic graphene for Cu2+ immobilization and application to the enrichment of low-concentration peptides for mass spectrometry analysis. ACS Appl Mater Inter 5(24):13104–13112

    Article  CAS  Google Scholar 

  37. Lu J, Deng C, Zhang X, Yang P (2013) Synthesis of Fe3O4/graphene/TiO2 composites for the highly selective enrichment of phosphopeptides from biological samples. ACS Appl Mater Inter 5(15):7330–7334

    Article  CAS  Google Scholar 

  38. Wang J, Fang J, Fang P, Li X, Wu S, Zhang W, Li S (2017) Preparation of hollow core/shell Fe3O4@graphene oxide composites as magnetic targeting drug nanocarriers. J Biomater Sci Polym Ed 28(4):337–349

    Article  CAS  PubMed  Google Scholar 

  39. Pirouz AA, Karjiban RA, Abu Bakar F, Selamat J (2018) A novel adsorbent magnetic graphene oxide modified with chitosan for the simultaneous reduction of mycotoxins. Toxins 10(9)

  40. Yang Y, Hu X, Zhao Y, Cui L, Huang Z, Long J, Xu J, Deng J, Wu C, Liao W (2017) Decontamination of tetracycline by thiourea-dioxide–reduced magnetic graphene oxide: effects of pH, ionic strength, and humic acid concentration. J Colloid Interface Sci 495:68–77

    Article  CAS  PubMed  Google Scholar 

  41. Shi C, Meng J, Deng C (2012) Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem Commun 48(18):2418–2420

    Article  CAS  Google Scholar 

  42. Xiong Y, Deng C, Zhang X (2014) Development of aptamer-conjugated magnetic graphene/gold nanoparticle hybrid nanocomposites for specific enrichment and rapid analysis of thrombin by MALDI-TOF MS. Talanta 129:282–289

    Article  CAS  PubMed  Google Scholar 

  43. IARC, International Agency for Research on Cancer, Aflatoxins. IARC monograph on the evaluation of carcinogenic risks to humans, Vol. 82. Lyon, France: World Health Organization, IARC (2002) 171–300

  44. European Commission (2004) Commission regulation (EC) no 683, 2004. Official Journal of the European Community L106:3–5

    Google Scholar 

  45. Shuib NS, Makahleh A, Salhimi SM, Saad B (2017) Determination of aflatoxin M1 in milk and dairy products using high performance liquid chromatography-fluorescence with post column photochemical derivatization. J Chromatogr A 1510:51–56

    Article  CAS  PubMed  Google Scholar 

  46. Donghun L, Kwang-Geun L (2015) Analysis of aflatoxin M1 and M2 in commercial dairy products using high-performance liquid chromatography with a fluorescence detector. Food Control 50:467–471

    Article  Google Scholar 

  47. Liu BH, Chu KC, Yu FY (2016) Novel monoclonal antibody-based sensitive enzyme-linked immunosorbent assay and rapid immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control 66:1–7

    Article  CAS  Google Scholar 

  48. Peng DP, Yang BJ, Pan YH, Wang YL, Chen DM, Liu ZL, Yang WX, Tao YF, Yuan ZH (2016) Development and validation of a sensitive monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the determination of the aflatoxin M1 levels in milk. Toxicon 112:18–24

    Article  Google Scholar 

  49. Xiong JL, Peng LJ, Zhou HL, Lin B, Yan PY, Liu YL, Wu LY, Qiu YS (2020) Prevalence of aflatoxin M1 in raw milk and three types of liquid milk products in central-south China. Food Control 108:106840

    Article  CAS  Google Scholar 

  50. Mao Y, Fan Q, Li J, Yu L, Qu LB (2014) A novel and green CTAB-functionalized graphene nanosheets electrochemical sensor for Sudan I determination. Sensors Actuat B Chem 203:759–765

    Article  CAS  Google Scholar 

  51. Zhang X, Tang Q, Mi T, Zhao S, Wen K, Guo L, Mi J, Zhang S, Shi W, Shen J, Ke Y, Wang Z (2018) Dual-wavelength fluorescence polarization immunoassay to increase information content per screen: applications for simultaneous detection of total aflatoxins and family zearalenones in maize. Food Control 87:100–108

    Article  CAS  Google Scholar 

  52. Zhang X, Wen K, Wang Z, Jiang H, Beier RC, Shen J (2016) An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk. Food Control 60:588–595

    Article  CAS  Google Scholar 

  53. Li CL, Liang X, Wen K, Li YH, Zhang XY, Ma MF, Yu XZ, Yu WB, Shen JZ, Wang ZH (2019) Class specific monoclonal antibodies and dihydropteroate synthase in bioassays used for the detection of sulfonamides: structural insights into recognition diversity. Anal Chem 91(3):2392–2400

    Article  CAS  PubMed  Google Scholar 

  54. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986

    Article  CAS  PubMed  Google Scholar 

  55. He H, Gao C (2010) Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl Mater Inter 2(11):3201–3210

    Article  CAS  Google Scholar 

  56. Arindam S, Basiruddin SK, Ray SC, Roy SS, Jana NR (2010) Functionalized graphene and graphene oxide solution via polyacrylate coating. Nanoscale 2(12):2777–2782

    Article  Google Scholar 

  57. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19(18):2710–2714

    Article  CAS  Google Scholar 

  58. Zhan S, Zhu D, Ma S, Yu W, Jia Y, Li Y, Yu H, Shen Z (2015) Highly efficient removal of pathogenic bacteria with magnetic graphene composite. ACS Appl Mater Inter 7(7):4290–4298

    Article  CAS  Google Scholar 

  59. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733

    Article  CAS  PubMed  Google Scholar 

  60. Guddat LW, Herron JN, Edmundson AB (1993) Three-dimensional structure of a human immunoglobulin with a hinge deletion. Proc Nati Acad Sci USA 90(9):4271–4275

    Article  CAS  Google Scholar 

  61. Sharma A, Catanante G, Hayat A, Istamboulie G, Rejeb IB, Bhand S, Marty JL (2016) Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample. Talanta 158:35–41

    Article  CAS  PubMed  Google Scholar 

  62. Karczmarczyk A, Dubiak-Szepietowska M, Mariia V, Rodriguez-Emmenegger C, Dostálek J, Feller KH (2016) Sensitive and rapid detection of aflatoxin M1 in milk utilizing enhanced SPR and p(HEMA) brushes. Biosens Bioelectron 81:159–165

    Article  CAS  PubMed  Google Scholar 

  63. Istamboulié G, Paniel N, Zara L, Granados LR, Barthelmebs L, Noguer T (2016) Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta 146:464–469

    Article  PubMed  Google Scholar 

  64. Khoshfetrata SM, Bagheri H, Mehrgardia MA (2018) Visual electrochemiluminescence biosensing of aflatoxin M1 based on luminol-functionalized, silver nanoparticle-decorated graphene oxide. Biosens Bioelectron 100:382–388

    Article  Google Scholar 

  65. Guo HL, Zhou XH, Zhang Y, Song BD, Zhang JX, Shi HC (2016) Highly sensitive and simultaneous detection of melamine and aflatoxin M1 in milk products by multiplexed planar waveguide fluorescence immunosensor (MPWFI). Food Chem 197:359–366

    Article  CAS  PubMed  Google Scholar 

  66. Han MM, Gong L, Wang JY, Zhang XP, Jin YP, Zhao RM, Yang CJ, He LD, Feng XY, Chen YQ (2019) An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk. Sensor Actuat B-Chem 292:94–104

    Article  CAS  Google Scholar 

  67. Song D, Yang R, Fang SY, Liu YP, Long F (2018) A FRET-based dual-color evanescent wave optical fiber aptasensor for simultaneous fluorometric determination of aflatoxin M1 and ochratoxin a. Microchim Acta 185:508

    Article  Google Scholar 

Download references

Funding

This study was supported by Natural Science Foundation of China (No. 31802249), Science and Technology Key Research Project of Henan Provincial Education Department of China (No. 20A550009) and Key Scientific and Technological Project of Henan Province Department of China (202102310303 and 202102110103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yexuan Mao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

It is mainly contained preparation of scFv-1D3, homology modeling of scFv-1D3, molecular recognition of scFv-1D3 and development of the FPIA for AFM1 in milk samples. The details are available free of charge via the Internet at http://...

ESM 1

(DOCX 505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, X., Song, L. et al. An ultrasensitive, homogeneous fluorescence quenching immunoassay integrating separation and detection of aflatoxin M1 based on magnetic graphene composites. Microchim Acta 188, 59 (2021). https://doi.org/10.1007/s00604-021-04715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04715-2

Keywords

Navigation