Skip to main content

Advertisement

Log in

Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nanostructured nickel (Ni) and nickel oxide (NiO) electrodes were fabricated on Ni foils using the glancing angle deposition (GLAD) technique. Cyclic voltammetry and amperometry showed the electrodes enable non-enzymatic electrochemical determination of glucose in strongly alkaline media. Under optimized conditions of NaOH concentration and working potential (~ 0.50 V vs. Ag/AgCl), the GLAD electrodes performed far better than bare Ni foil electrodes, with the GLAD NiO electrode showing an outstanding sensitivity (4400 μA mM−1 cm−2), superior detection limit (7 nM), and wide dynamic range (0.5 μM–9 mM), with desirable selectivity and reproducibility. Based on their performance at a low concentration, the GLAD NiO electrodes were also used to quantify glucose in artificial urine and sweat samples which have significantly lower glucose levels than blood. The GLAD NiO electrodes showed negligible response to the common interferents in glucose measurement (uric acid, dopamine, serotonin, and ascorbic acid), and they were not poisoned by high amounts of sodium chloride.

The figures depict (A) SEM image of vertical post-GLAD NiO electrodes used for non-enzymatic electrochemical glucose monitoring, and (B) calibration plots of the three different electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gonzales WV, Mobashsher AT, Abbosh A (2019) The progress of glucose monitoring—a review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors (Basel) 19(4):800

    Google Scholar 

  2. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301

    CAS  Google Scholar 

  3. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505

    CAS  PubMed  Google Scholar 

  4. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186

    CAS  Google Scholar 

  5. Dhara K, Mahapatra DR (2017) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185(49):41–32

    Google Scholar 

  6. Hwang D-W, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors – a review. Anal Chim Acta 1033:1–34

    CAS  PubMed  Google Scholar 

  7. Niu X, Li X, Pan J, He Y, Qiu F, Yan Y (2016) Recent advances in non-enzymatic electrochemical glucose sensors based on nonprecious transition metal materials: opportunities and challenges. RSC Adv 6:84893–84905

    CAS  Google Scholar 

  8. Shu H, Cao L, Chang G, He H, Zhang Y, He Y (2014) Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochim Acta 132:524–532

    CAS  Google Scholar 

  9. Unmussig T, Weltin A, Urban S, Daubinger P, Urban GA, Kieninger J (2018) Non-enzymatic glucose sensing based on hierarchical platinum micro−/nanostructures. J Electroanal Chem 816:215–222

    Google Scholar 

  10. Wang C-H, Lee S-W, Tseng C-J, Wu J-W, Hung I-M, Tseng C-M, Chang J-K (2014) Nanocrystalline Pd/carbon nanotube composites synthesized using supercritical fluid for superior glucose sensing performance. J Alloy Compd 615:S496–S500

    CAS  Google Scholar 

  11. Yang H, Wang Z, Zhou Q, Xu C, Hou J (2019) Nanoporous platinum-copper flowers for non-enzymatic sensitive detection of hydrogen peroxide and glucose at near-neutral pH values. Microchim Acta 186(631):631–639

    Google Scholar 

  12. Wang R, Liang X, Liu H, Cui L, Zhang X, Liu C (2018) Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles. Microchim Acta 185(339):331–337

    Google Scholar 

  13. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85:3561–3569

    CAS  PubMed  Google Scholar 

  14. Ci S, Huang T, Wen Z, Cui S, Mao S, Steeber DA, Chen J (2014) Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens Bioelectron 54:251–257

    CAS  PubMed  Google Scholar 

  15. Garcia-Garcia FJ, Salazar P, Yubero F, Gonzalez-Elipe AR (2016) Non-enzymatic glucose electrochemcial sensor made of porous NiO thin films prepared by reactive magnetron sputering at oblique angles. Electrochim Acta 201:38–44

    CAS  Google Scholar 

  16. Miao Y, Ouyang L, Zhou S, Xu L, Yang Z, Xiao M, Ouyang R (2014) Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens Bioelectron 53:428–439

    CAS  PubMed  Google Scholar 

  17. Liu H, Wu X, Yang B, Li ZH, Lei L, Zhang X (2015) Three-dimensional porous NiO nanosheets vertically grown on graphite disks for enhanced performance non-enzymatic glucose sensor. Electrochim Acta 174:745–752

    CAS  Google Scholar 

  18. Cui Z, Yin H, Nie Q, Qin D, Wu W, He X (2015) Hierarchical flower-like NiO hollow microspheres for non-enzymatic glucose sensors. J Electroanal Chem 757:51–57

    CAS  Google Scholar 

  19. Tian H, Jia M, Zhang M, Hi J (2013) Nonenzymatic glucose sensor based on nickel ion implanted-modified indium tin oxide electrode. Electrochim Acta 96:285–290

    CAS  Google Scholar 

  20. Ensafi AA, Ahmadi N, Rezaei B (2017) Nickel nanoparticles supported on porous silicon flour, application as a non-enzymatic electrochemical glucose sensor. Sens Actuators B-Chem 239:807–815

    CAS  Google Scholar 

  21. Lin D, Harris KD, Chan NWC, Jemere AB (2017) Nanostructured indium tin oxide electrodes immobilized with toll-like receptor proteins for label-free electrochemical detection of pathogen markers. Sens Actuators B-Chem 257:324–330

    Google Scholar 

  22. Dulac M, Melet A, Harris KD, Limoges B, Galardon E, Balland V (2019) An optical H2S biosensor based on the chemoselective Hb-I protein tethered to a transparent, high surface area nanocolumnar electrode. Sens Actuators B-Chem 290:326–335

    CAS  Google Scholar 

  23. Tyagi M, Tomar M, Gupta V (2014) Glad assisted synthesis of NiO nanorods for realization of enzymatic reagentless urea biosensor. Biosens Bioelectron 52:196–201

    CAS  PubMed  Google Scholar 

  24. Salazar P, Rico V, Gonzalez-Elipe AR (2017) Non-enzymatic hydrogen peroxide detection at NiO nanoporous thin film-electrodes prepared by physical vapor deposition at oblique angles. Electrochim Acta 235:534–542

    CAS  Google Scholar 

  25. Dick B, Brett MJ, Smy T, Belov M, Freeman MR (2001) Periodic submicrometer structures by sputtering. J Vac Sci Technol A 19:1813–1819

    CAS  Google Scholar 

  26. Bezuidenhout LW, Nazemifard N, Jemere AB, Harrison DJ, Brett MJ (2011) Microchannels filled with diverse micro- and nanostructures fabricated by glancing angle deposition. Lab Chip 11:1671–1678

    CAS  PubMed  Google Scholar 

  27. Krause KM, Taschuk MT, Harris KD, Rider DA, Wakefield NG, Sit JC, Buriak JM, Thommes M, Brett MJ (2010) Surface area characterization of obliquely deposited metal oxide nanostructured thin films. Langmuir 26:4368–4376

    CAS  PubMed  Google Scholar 

  28. Mu Y, Jia D, He Y, Miao Y, Wu H-L (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952

    CAS  PubMed  Google Scholar 

  29. Nacef M, Chelaghmia LM, Affoune AM, Pontie M (2019) Electrochemical investigation of glucose on a highly sensitive nickel-copper modified graphite electrode. Electroanalysis 31:113–120

    CAS  Google Scholar 

  30. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    CAS  Google Scholar 

  31. Guo C, Wang Y, Zhao Y, Xu C (2013) Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal Methods 5:1644–1647

    CAS  Google Scholar 

  32. Zhang Y, Wang Y, Jia J, Wang J (2012) Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens Actuators B-Chem 171-172:580–587

    CAS  Google Scholar 

  33. Lu W, Wqin X, Asiri AM, Al-Youbi AO, Sun X (2013) Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst 138:417–420

    CAS  PubMed  Google Scholar 

  34. Zhao Y, Gu G, You S, Ji R, Suo H, Zhao C, Liu F (2015) Preparation of Ni(OH)2 nanosheets on Ni foam via a direct precipitation method for a highly sensitive non-enzymatic glucose sensor. RSC Adv 5:53665–53670

    CAS  Google Scholar 

  35. Ramachandrain K, Kumar TR, Babu KJ, Kumar GG (2016) Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications. Sci Rep 6:36583

    Google Scholar 

  36. Zhang H, Liu S (2017) Nanoparticles-assembled NiO nanosheets templated by graphene oxide film for highly sensitive non-enzymatic glucose sensing. Sens Actuators B-Chem 238:788–794

    CAS  Google Scholar 

  37. Ni Y, Xu J, Liang Q, Shao S (2017) Enzyme-free glucose sensor based on heteroatom-enriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sens Actuators B-Chem 250:491–498

    CAS  Google Scholar 

  38. Madhuvilakku R, Mariappan R, Algar S, Piraman S (2018) Sensitive and selective non-enzymatic detection of glucose by monodispersed NiO@S-doped hollow carbon sphere hybrid nanostructure. Anal Chim Acta 1042:93–108

    CAS  PubMed  Google Scholar 

  39. He G, Tian L, Cai Y, Wu S, Su Y, Yan H, Pu W, Zhang J, Li L (2018) Sensitive nonenzymatic electrochemical glucose detection based on hollow porous NiO. Nanoscale Res Lett 13:3

    PubMed  PubMed Central  Google Scholar 

  40. Cui N, Guo P, Yuan Q, Ye C, Yang M, Yang M, Chee KWA, Wang F, Fu L, Wei Q, Lin C-T, Gao J (2019) Single-step formation of Ni nanoparticle-modified graphene–diamond hybrid electrodes for electrochemical glucose detection. Sensors 19(2979):2971–2911

    Google Scholar 

  41. Luo J, Zhao D, Yang M, Qu F (2018) Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose. Microchim Acta 185(229):221–226

    Google Scholar 

  42. Makaram P, Owens D, Acceros J (2014) Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics 4:27–46

Download references

Acknowledgements

The authors acknowledge Prof. Jeremy Sit for access to the GLAD evaporation equipment and Paul Concepcion for SEM imaging.

Funding

Natasha Singer and Aliesha Johnson received financial assistance from the NRC Student Employment Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abebaw B. Jemere.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singer, N., Pillai, R.G., Johnson, A.I.D. et al. Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing. Microchim Acta 187, 196 (2020). https://doi.org/10.1007/s00604-020-4171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4171-5

Keywords

Navigation