Skip to main content

Advertisement

Log in

Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In recent years, the abuse of antibiotics has led to the pollution of soil and water environment, not only poultry husbandry and food manufacturing will be influenced to different degree, but also the human body will produce antibody. The detection of antibiotic content in production and life is imperative. In this review, we provide comprehensive information about chemical sensors and biosensors for antibiotic detection. We classify the currently reported antibiotic detection technologies into chromatography, mass spectrometry, capillary electrophoresis, optical detection, and electrochemistry, introduce some representative examples for each technology, and conclude the advantages and limitations. In particular, the optical and electrochemical methods based on nanomaterials are discussed and evaluated in detail. In addition, the latest research in the detection of antibiotics by photosensitive materials is discussed. Finally, we summarize the pros and cons of various antibiotic detection methods and present a discussion and outlook on the expansion of cross-scientific areas. The synthesis and application of optoelectronic nanomaterials and aptamer screening are discussed and prospected, and the future trends and potential impact of biosensors in antibiotic detection are outlined.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abedalwafa MA, Li Y, Ni CF, Wang L (2019) Colorimetric sensor arrays for the detection and identification of antibiotics. Anal Methods-Uk 11(22):2836–2854. https://doi.org/10.1039/c9ay00371a

    Article  Google Scholar 

  2. Aga DS, Goldfish R, Kulshrestha P (2003) Application of ELISA in determining the fate of tetracyclines in land-applied livestock wastes. Analyst 128(6):658–662. https://doi.org/10.1039/b301630g

    Article  CAS  PubMed  Google Scholar 

  3. Hoang VT, Nguyen TTT, Belhouchat K, Meftah M, Sow D, Benkouiten S, Dao TL, Ly TDA, Drali T, Yezli S, Alotaibi B, Raoult D, Parola P, de Santi VP, Gautret P (2019) Antibiotic use for respiratory infections among Hajj pilgrims: a cohort survey and review of the literature. Travel Med Infect Di 30:39–45. https://doi.org/10.1016/j.tmaid.2019.06.007

    Article  Google Scholar 

  4. Sanders FRK, Goslings JC, Mathot RAA, Schepers T (2019) Target site antibiotic concentrations in orthopedic/trauma extremity surgery: is prophylactic cefazolin adequately dosed? A systematic review and meta-analysis. Acta Orthop 90(2):97–104. https://doi.org/10.1080/17453674.2019.1577014

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thabit AK, Fatani DF, Bamakhrama MS, Barnawi OA, Basudan LO, Alhejaili SF (2019) Antibiotic penetration into bone and joints: an updated review. Int J Infect Dis 81:128–136. https://doi.org/10.1016/j.ijid.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  6. Yimer EM, Hishe HZ, Tuem KB (2019) Repurposing of the beta-lactam antibiotic, ceftriaxone for neurological disorders: a review. Front Neurosci-Switz 13. https://doi.org/10.3389/fnins.2019.00236

  7. Egan G, Robinson PD, Martinez JPD, Alexander S, Aminann RA, Dupuis LL, Fisher BT, Lehrnbecher T, Phillips B, Cabral S, Tomlinson G, Sung L (2019) Efficacy of antibiotic prophylaxis in patients with cancer and hematopoietic stem cell transplantation recipients: a systematic review of randomized trials. Cancer Med-Us. https://doi.org/10.1002/cam4.2395

  8. Khouly I, Braun RS, Chambrone L (2019) Antibiotic prophylaxis may not be indicated for prevention of dental implant infections in healthy patients. A systematic review and meta-analysis. Clin Oral Investig 23(4):1525–1553. https://doi.org/10.1007/s00784-018-2762-x

    Article  PubMed  Google Scholar 

  9. Ben YJ, Fu CX, Hu M, Liu L, Wong MH, Zheng CM (2019) Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environ Res 169:483–493. https://doi.org/10.1016/j.envres.2018.11.040

    Article  CAS  PubMed  Google Scholar 

  10. Mikhaleva TV, Zakharova OI, Ilyasov PV (2019) Antibiotic resistance: modern approaches and ways to overcome it (review). Appl Biochem Microbiol 55(2):99–106. https://doi.org/10.1134/S000368381902011x

    Article  CAS  Google Scholar 

  11. Yan WF, Xiao Y, Yan WD, Ding R, Wang SH, Zhao F (2019) The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: a review. Chem Eng J 358:1421–1437. https://doi.org/10.1016/j.cej.2018.10.128

    Article  CAS  Google Scholar 

  12. Malakootian M, Yaseri M, Faraji M (2019) Removal of antibiotics from aqueous solutions by nanoparticles: a systematic review and meta-analysis. Environ Sci Pollut R 26(9):8444–8458. https://doi.org/10.1007/s11356-019-04227-w

    Article  CAS  Google Scholar 

  13. Zhang W, Liu QX, Guo ZH, Lin JS (2018) Practical application of aptamer-based biosensors in detection of low molecular weight pollutants in water sources. Molecules 23(2). https://doi.org/10.3390/molecules23020344

  14. Liu DR, Pan XY, Mu W, Li C, Han XJ (2019) Detection of tetracycline in water using glutathione-protected fluorescent gold nanoclusters. Anal Sci 35(4):367–370. https://doi.org/10.2116/analsci.18P392

    Article  CAS  PubMed  Google Scholar 

  15. Min W, Shen Y, Youwei H, Didi S (2011) Residual characterization of multi-categorized antibiotics in five typical aquaculture waters. Ecol Environ Sci 20(5):934–939

    Google Scholar 

  16. Zhang XP, Wang JJ, Wu QH, Li L, Wang Y, Yang HL (2019) Determination of kanamycin by high performance liquid chromatography. Molecules 24(10). https://doi.org/10.3390/molecules24101902

  17. Agarwal VK (1992) High-performance liquid-chromatographic methods for the determination of sulfonamides in tissue, milk and eggs. J Chromatogr 624(1–2):411–423. https://doi.org/10.1016/0021-9673(92)85692-m

    Article  CAS  PubMed  Google Scholar 

  18. Gros M, Petrovic M, Barcelo D (2006) Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 70(4):678–690. https://doi.org/10.1016/j.talanta.2006.05.024

    Article  CAS  PubMed  Google Scholar 

  19. Fanali S (1996) Identification of chiral drug isomers by capillary electrophoresis. J Chromatogr A 735(1–2):77–121. https://doi.org/10.1016/0021-9673(95)01327-x

    Article  CAS  PubMed  Google Scholar 

  20. Pang JL, Liao YM, Huang XJ, Ye ZW, Yuan DX (2019) Metal-organic framework-monolith composite-based in-tube solid phase microextraction on-line coupled to high-performance liquid chromatography-fluorescence detection for the highly sensitive monitoring of fluoroquinolones in water and food samples. Talanta 199:499–506. https://doi.org/10.1016/j.talanta.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  21. Cui CZ, Cao Z, Zhang SP, Hu YR, Jiang L, Yao SJ, Ye H, Zhou YB, Hu J, Lin KF, Zhang TY (2019) Application of a novel diol-based porous organic polymer to the determination of trace-level tetracyclines in water. Anal Methods-Uk 11(18):2473–2481. https://doi.org/10.1039/c8ay02790k

    Article  CAS  Google Scholar 

  22. Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415(2):175–181. https://doi.org/10.1016/j.ab.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  23. Golet EM, Alder AC, Hartmann A, Ternes TA, Giger W (2001) Trace determination of fluoroquinolone antibacterial agents in solid-phase extraction urban wastewater by and liquid chromatography with fluorescence detection. Anal Chem 73(15):3632–3638. https://doi.org/10.1021/ac0015265

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Y, Chandra P, Song KM, Ban C, Shim YB (2012) Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens Bioelectron 36(1):29–34. https://doi.org/10.1016/j.bios.2012.03.034

    Article  CAS  PubMed  Google Scholar 

  25. Kurihara M, Hasebe T, Kawashima T (2002) Chemiluminescent methods in analytical chemistry (review). Bunseki Kagaku 51(4):205–233. https://doi.org/10.2116/bunsekikagaku.51.205

    Article  CAS  Google Scholar 

  26. Liang P, Sanchez RI, Martin MT (1996) Electrochemiluminescence-based detection of beta-lactam antibiotics and beta-lactamases. Anal Chem 68(14):2426–2431. https://doi.org/10.1021/ac951072p

    Article  CAS  PubMed  Google Scholar 

  27. Chen QH, Wu SN, Xin YJ (2016) Synthesis of Au-CuS-TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline. Chem Eng J 302:377–387. https://doi.org/10.1016/j.cej.2016.05.076

    Article  CAS  Google Scholar 

  28. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. https://doi.org/10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  29. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566. https://doi.org/10.1038/355564a0

    Article  CAS  PubMed  Google Scholar 

  30. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650

    Article  CAS  Google Scholar 

  31. Famulok M, Mayer G (1999) Aptamers as tools in molecular biology and immunology. Comb Chem Biol 243:123–136

    CAS  Google Scholar 

  32. Ko HY, Choi K-J, Lee CH, Kim S (2011) A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin alpha(v)beta(3) and tenascin-C proteins. Biomaterials 32(4):1130–1138. https://doi.org/10.1016/j.biomaterials.2010.10.034

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998. https://doi.org/10.1021/cr030183i

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng J, Gan N, Zhang K, He LY, Lin JY, Hu FT, Cao YT (2019) Zero background and triple-signal amplified fluorescence aptasensor for antibiotics detection in foods. Talanta 199:491–498. https://doi.org/10.1016/j.talanta.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  35. Sui CJ, Zhou YL, Wang MY, Yin HS, Wang P, Ai SY (2018) Aptamer-based photoelectrochemical biosensor for antibiotic detection using ferrocene modified DNA as both aptamer and electron donor. Sensor Actuat B-Chem 266:514–521. https://doi.org/10.1016/j.snb.2018.03.171

    Article  CAS  Google Scholar 

  36. Liu XQ, Wang T, Lu Y, Wang WJ, Zhou ZP, Yan YS (2019) Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin. Sensor Actuat B-Chem 289:242–251. https://doi.org/10.1016/j.snb.2019.03.094

    Article  CAS  Google Scholar 

  37. Boukhchina S, Akrout H, Berling D, Bousselmi L (2019) Highly efficient modified lead oxide electrode using a spin coating/electrodeposition mode on titanium for electrochemical treatment of pharmaceutical pollutant. Chemosphere 221:356–365. https://doi.org/10.1016/j.chemosphere.2019.01.057

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Bian F, Qin XF, Wang QQ (2018) Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO2 nanorod array sensitized with Eu(III)-doped CdS quantum dots. Microchim Acta 185(3). https://doi.org/10.1007/s00604-018-2711-z

  39. Qin XF, Wang QQ, Geng LP, Shu XL, Wang Y (2019) A "signal-on" photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol. Talanta 197:28–35. https://doi.org/10.1016/j.talanta.2018.12.103

    Article  CAS  PubMed  Google Scholar 

  40. Qin XF, Geng LQ, Wang QQ, Wang Y (2019) Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO2 nanotube array co-sensitized with a nanocomposite prepared from polydopamine and Ag2S nanoparticles. Microchim Acta 186(7). https://doi.org/10.1007/s00604-019-3566-7

  41. He BS, Li JW (2019) A sensitive electrochemical sensor based on reduced graphene oxide/Fe3O4 nanorod composites for detection of nitrofurantoin and its metabolite. Anal Methods-Uk 11(11):1427–1435. https://doi.org/10.1039/c9ay00197b

    Article  CAS  Google Scholar 

  42. Govindasamy M, Wang SF, Kumaravel S, Ramalingam RJ, Al-lohedan HA (2019) Facile synthesis of copper sulfide decorated reduced graphene oxide nanocomposite for high sensitive detection of toxic antibiotic in milk. Ultrason Sonochem 52:382–390. https://doi.org/10.1016/j.ultsonch.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  43. Chen XY, Liu Y, Fang X, Li Z, Pu HH, Chang JB, Chen JH, Mao S (2019) Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Biosens Bioelectron 126:664–671. https://doi.org/10.1016/j.bios.2018.11.034

    Article  CAS  PubMed  Google Scholar 

  44. Yadav M, Ganesan V, Gupta R, Yadav DK, Sonkar PK (2019) Cobalt oxide nanocrystals anchored on graphene sheets for electrochemical determination of chloramphenicol. Microchem J 146:881–887. https://doi.org/10.1016/j.microc.2019.02.025

    Article  CAS  Google Scholar 

  45. Rajaji U, Manavalan S, Chen SM, Govindasamy M, Chen TW, Maiyalagan T (2019) Microwave-assisted synthesis of europium(III) oxide decorated reduced graphene oxide nanocomposite for detection of chloramphenicol in food samples. Compos Part B-Eng 161:29–36. https://doi.org/10.1016/j.compositesb.2018.10.043

    Article  CAS  Google Scholar 

  46. Mohammad-Razdari A, Ghasemi-Varnamkhasti M, Izadi Z, Ensafi AA, Rostami S, Siadat M (2019) An impedimetric aptasensor for ultrasensitive detection of penicillin G based on the use of reduced graphene oxide and gold nanoparticles. Microchim Acta 186(6). https://doi.org/10.1007/s00604-019-3510-x

  47. Liu P, Li C, Zhang RX, Tang Q, Wei J, Lu Y, Shen PP (2019) An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy. Biosens Bioelectron 126:543–550. https://doi.org/10.1016/j.bios.2018.10.048

    Article  CAS  PubMed  Google Scholar 

  48. Fang X, Chen XY, Liu Y, Li QJ, Zeng ZR, Maiyalagan T, Mao S (2019) Nanocomposites of Zr(IV)-based metal-organic frameworks and reduced graphene oxide for electrochemically sensing ciprofloxacin in water. Acs Appl Nano Mater 2(4):2367–2376. https://doi.org/10.1021/acsanm.9b00243

    Article  CAS  Google Scholar 

  49. Ensafi AA, Zandi-Atashbar N, Gorgabi-Khorzoughi M, Rezaei B (2019) Nickel-ferrite oxide decorated on reduced graphene oxide, an efficient and selective electrochemical sensor for detection of furazolidone. IEEE Sensors J 19(14):5396–5403. https://doi.org/10.1109/Jsen.2019.2908994

    Article  CAS  Google Scholar 

  50. Zeng RJ, Zhang LJ, Su LS, Luo ZB, Zhou Q, Tang DP (2019) Photoelectrochemical bioanalysis of antibiotics on rGO-Bi2WO6-Au based on branched hybridization chain reaction. Biosens Bioelectron 133:100–106. https://doi.org/10.1016/j.bios.2019.02.067

    Article  CAS  PubMed  Google Scholar 

  51. Hassanzadeh J, Moghadam BR, Sobhani-Nasab A, Ahmadi F, Rahimi-Nasrabadi M (2019) Specific fluorometric assay for direct determination of amikacin by molecularly imprinting polymer on high fluorescent g-C3N4 quantum dots. Spectrochim Acta A 214:451–458. https://doi.org/10.1016/j.saa.2019.02.067

    Article  CAS  Google Scholar 

  52. Xu L, Li HN, Yan PC, Xia JX, Qiu JX, Xu Q, Zhang SQ, Li HM, Yuan SQ (2016) Graphitic carbon nitride/BiOCl composites for sensitive photoelectrochemical detection of ciprofloxacin. J Colloid Interface Sci 483:241–248. https://doi.org/10.1016/j.jcis.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  53. Dang XM, Zhao HM, Wang XN, Sailijiang T, Chen S, Quan X (2018) Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide. Microchim Acta 185(7). https://doi.org/10.1007/s00604-018-2877-4

  54. Yan J, Fan YM, Lian JB, Zhao Y, Xu YG, Gu JM, Song YH, Xu H, Li HM (2017) Kinetics and mechanism of enhanced photocatalytic activity employing ZnS nanospheres/graphene-like C3N4. Mol Catal 438:103–112. https://doi.org/10.1016/j.mcat.2017.05.023

    Article  CAS  Google Scholar 

  55. Mehlhorn A, Rahimi P, Joseph Y (2018) Aptamer-based biosensors for antibiotic detection: a review. Biosensors-Basel 8(2):54–116. https://doi.org/10.3390/bios8020054

    Article  CAS  PubMed Central  Google Scholar 

  56. Dong YC, Li FT, Wang Y (2020) Low-dimension nanomaterial-based sensing matrices for antibiotics detection: a mini review. Front Chem 8. https://doi.org/10.3389/fchem.2020.00551

  57. Ahmed S, Ning J, Cheng GY, Ahmad I, Li J, Liu MY, Qu W, Iqbal M, Shabbir MAB, Yuan ZH (2017) Receptor-based screening assays for the detection of antibiotics residues - a review. Talanta 166:176–186. https://doi.org/10.1016/j.talanta.2017.01.057

    Article  CAS  PubMed  Google Scholar 

  58. Ahmed S, Ning JN, Peng DP, Chen T, Ahmad I, Ali A, Lei ZX, Shabbir MA, Cheng GY, Yuan ZH (2020) Current advances in immunoassays for the detection of antibiotics residues: a review. Food Agric Immunol 31(1):268–290. https://doi.org/10.1080/09540105.2019.1707171

    Article  CAS  Google Scholar 

  59. Weng R, Sun LS, Jiang LP, Li N, Ruan GH, Li JP, Du FY (2019) Electrospun graphene oxide-doped nanofiber-based solid phase extraction followed by high-performance liquid chromatography for the determination of tetracycline antibiotic residues in food samples. Food Anal Methods 12(7):1594–1603. https://doi.org/10.1007/s12161-019-01495-7

    Article  Google Scholar 

  60. Di SY, Yu J, Chen P, Zhu GT, Zhu SK (2020) Net-like mesoporous carbon nanocomposites for magnetic solid-phase extraction of sulfonamides prior to their quantitation by UPLC-HRMS. Microchim Acta 187(2). https://doi.org/10.1007/s00604-019-4072-7

  61. Dil EA, Ghaedi M, Asfaram A, Tayebi L, Mehrabi F (2020) A ferrofluidic hydrophobic deep eutectic solvent for the extraction of doxycycline from urine, blood plasma and milk samples prior to its determination by high-performance liquid chromatography-ultraviolet. J Chromatogr A 1613. https://doi.org/10.1016/j.chroma.2019.460695

  62. Ma N, Feng C, Qu P, Wang G, Liu J, Liu JX, Wang JP (2020) Determination of tetracyclines in chicken by dispersive solid phase microextraction based on metal-organic frameworks/molecularly imprinted nano-polymer and ultra performance liquid chromatography. Food Anal Methods 13(5):1211–1219. https://doi.org/10.1007/s12161-020-01744-0

    Article  Google Scholar 

  63. Zhang Z, Cao XL, Zhang ZP, Yin JG, Wang DN, Xu YN, Zhang W, Li XY, Zhang QS, Liu LW (2020) Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta:208. https://doi.org/10.1016/j.talanta.2019.120385

  64. Wang JM, Xu J, Ji XF, Wu HZ, Yang H, Zhang H, Zhang XM, Li ZG, Ni XL, Qian MR (2020, 1617) Determination of veterinary drug/pesticide residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification combined with ultra-high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. https://doi.org/10.1016/j.chroma.2019.460808

  65. Zhao YF, Wu R, Yu H, Li JK, Liu LQ, Wang SS, Chen XF, TWD C (2020) Magnetic solid-phase extraction of sulfonamide antibiotics in water and animal-derived food samples using core-shell magnetite and molybdenum disulfide nanocomposite adsorbent. J Chromatogr A 1610. https://doi.org/10.1016/j.chroma.2019.460543

  66. Ma Z, Liu J, Li H, Zhang W, Williams MA, Gao YZ, Gudda FO, Lu C, Yang B, Waigi MG (2020) A fast and easily parallelizable biosensor method for measuring extractable tetracyclines in soils. Environ Sci Technol 54(2):758–767. https://doi.org/10.1021/acs.est.9b04051

    Article  CAS  PubMed  Google Scholar 

  67. Liu XY, Tong Y, Zhang L (2020) Tailorable yolk-shell Fe3O4@graphitic carbon submicroboxes as efficient extraction materials for highly sensitive determination of trace sulfonamides in food samples. Food Chem 303. https://doi.org/10.1016/j.foodchem.2019.125369

  68. Wu JY, Li YY, Li WC, Gong ZB, Huang XJ (2020) Preparation of a novel monolith-based adsorbent for solid-phase microextraction of sulfonamides in complex samples prior to HPLC-MS/MS analysis. Anal Chim Acta 1118:9–17. https://doi.org/10.1016/j.aca.2020.04.035

    Article  CAS  PubMed  Google Scholar 

  69. Ma SY, Yang SX, Song ZH, Li JH, Shi QC, You HY, Liu HT, Lv M, Chen LX (2020) A twin enrichment method based on dispersive liquid-liquid microextraction and field-amplified sample injection for the simultaneous determination of sulfonamides. Analyst 145(5):1825–1832. https://doi.org/10.1039/c9an02127b

    Article  CAS  PubMed  Google Scholar 

  70. Niu PH, Nie XB, Li YJ, Liang XJ, Wang LC, Guo Y (2020) Magnetic N-doped 3D graphene-like framework carbon for extraction of cephalexin monohydrate and ceftiofur hydrochloride. Talanta 215. https://doi.org/10.1016/j.talanta.2020.120932

  71. Arthur CL, Pawliszyn J (1990) Solid-phase microextraction with thermal-desorption using fused-silica optical fibers. Anal Chem 62(19):2145–2148. https://doi.org/10.1021/ac00218a019

    Article  CAS  Google Scholar 

  72. Negarian M, Mohammadinejad A, Mohajeri SA (2019) Preparation, evaluation and application of core-shell molecularly imprinted particles as the sorbent in solid-phase extraction and analysis of lincomycin residue in pasteurized milk. Food Chem 288:29–38. https://doi.org/10.1016/j.foodchem.2019.02.087

    Article  CAS  PubMed  Google Scholar 

  73. Wang Z, Wang XY, Tian H, Wei QH, Liu BS, Bao GM, Liao ML, Peng JL, Huang XQ, Wang LQ (2019) High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Chemosphere 230:337–346. https://doi.org/10.1016/j.chemosphere.2019.05.047

    Article  CAS  PubMed  Google Scholar 

  74. Jitaru P, Infante HG, Adams FC (2003) Multicapillary gas chromatography coupled to inductively coupled plasma-time-of-flight mass spectrometry for rapid mercury speciation analysis. Anal Chim Acta 489(1):45–57. https://doi.org/10.1016/S0003-2670(03)00706-2

    Article  CAS  Google Scholar 

  75. He J, Zhang H, Yu K, Qiao LN, Li N, Zhang XN, Zhang DM, Zou MQ, Jiang J (2019) Rapid and direct mass spectrometric analysis of antibiotics in seawater samples. Analyst 144(6):1898–1903. https://doi.org/10.1039/c8an02119h

    Article  CAS  PubMed  Google Scholar 

  76. Shiroma LS, Queiroz SCN, Jonsson CM, Bottoli CBG (2020) Extraction strategies for simultaneous determination of florfenicol and florfenicol amine in tilapia (Oreochromis niloticus) muscle: quantification by LC-MS/MS. Food Anal Methods 13(1):291–302. https://doi.org/10.1007/s12161-019-01633-1

    Article  Google Scholar 

  77. Alhusban AA, Tarawneh OA, Dawabsheh SO, Alhusban AA, Abumhareb FW (2019) Liquid chromatography-tandem mass spectrometry for rapid and selective simultaneous determination of fluoroquinolones level in human aqueous humor. J Pharmacol Toxicol Methods 97:36–43. https://doi.org/10.1016/j.vascn.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  78. Aydogan C, El Rassi Z (2019) MWCNT based monolith for the analysis of antibiotics and pesticides in milk and honey by integrated nano-liquid chromatography-high resolution orbitrap mass spectrometry. Anal Methods-Uk 11(1):21–28. https://doi.org/10.1039/c8ay02173b

    Article  CAS  Google Scholar 

  79. Silvia Diaz-Cruz M, Jesus Garcia-Galan M, Barcelo D (2008) Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry. J Chromatogr A 1193(1–2):50–59. https://doi.org/10.1016/j.chroma.2008.03.029

    Article  CAS  PubMed  Google Scholar 

  80. Luz Gomez-Perez M, Plaza-Bolanos P, Romero-Gonzalez R, Luis Martinez-Vidal J, Garrido-Frenich A (2012) Comprehensive qualitative and quantitative determination of pesticides and veterinary drugs in honey using liquid chromatography-Orbitrap high resolution mass spectrometry. J Chromatogr A 1248:130–138. https://doi.org/10.1016/j.chroma.2012.05.088

    Article  CAS  Google Scholar 

  81. Cas MD, Casagni E, Gambaro V, Cesari E, Roda G (2019) Determination of daptomycin in human plasma and breast milk by UPLC/MS-MS. J Chromatogr B 1116:38–43. https://doi.org/10.1016/j.jchromb.2019.03.036

    Article  CAS  Google Scholar 

  82. Xu X, Xu XY, Han M, Qiu ST, Hou X (2019) Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chem 276:419–426. https://doi.org/10.1016/j.foodchem.2018.10.051

    Article  CAS  PubMed  Google Scholar 

  83. Wuethrich A, Haddad PR, Quirino JP (2016) Field-enhanced sample injection micelle-to-solvent stacking capillary zone electrophoresis-electrospray ionization mass spectrometry of antibiotics in seawater after solid-phase extraction. Electrophoresis 37(9):1139–1142. https://doi.org/10.1002/elps.201500448

    Article  CAS  PubMed  Google Scholar 

  84. Wang N, Su M, Liang SX, Sun HW (2016) Sensitive residue analysis of quinolones and sulfonamides in aquatic product by capillary zone electrophoresis using large-volume sample stacking with polarity switching combined with accelerated solvent extraction. Food Anal Methods 9(4):1020–1028. https://doi.org/10.1007/s12161-015-0269-5

    Article  Google Scholar 

  85. Moreno-Gonzalez D, Lara FJ, Jurgovska N, Gamiz-Gracia L, Garcia-Campana AM (2015) Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers. Anal Chim Acta 891:321–328. https://doi.org/10.1016/j.aca.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  86. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems - a novel concept for chemical sensing. Sensor Actuat B-Chem 1(1-6):244–248. https://doi.org/10.1016/0925-4005(90)80209-I

    Article  CAS  Google Scholar 

  87. Zhang K, Gan N, Shen ZP, Cao JX, Hu FT, Li TH (2019) Microchip electrophoresis based aptasensor for multiplexed detection of antibiotics in foods via a stir-bar assisted multi-arm junctions recycling for signal amplification. Biosens Bioelectron 130:139–146. https://doi.org/10.1016/j.bios.2019.01.044

    Article  CAS  PubMed  Google Scholar 

  88. He LY, Shen ZP, Cao YT, Li TH, Wu DZ, Dong YR, Gan N (2019) A microfluidic chip based ratiometric aptasensor for antibiotic detection in foods using stir bar assisted sorptive extraction and rolling circle amplification. Analyst 144(8):2755–2764. https://doi.org/10.1039/c9an00106a

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Gan N, Zhou Y, Li TH, Hu FT, Cao YT, Chen YJ (2017) Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosens Bioelectron 97:100–106. https://doi.org/10.1016/j.bios.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  90. Moreno-Gonzalez D, Hamed AM, Gilbert-Lopez B, Gamiz-Gracia L, Garcia-Campana AM (2017) Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples. J Chromatogr A 1510:100–107. https://doi.org/10.1016/j.chroma.2017.06.055

    Article  CAS  PubMed  Google Scholar 

  91. Kowalski P, Oledzka I, Plenis A, Miekus N, Pieckowski M, Bazczek T (2019) Combination of field amplified sample injection and hydrophobic interaction electrokinetic chromatography (FASI-HIEKC) as a signal amplification method for the determination of selected macrocyclic antibiotics. Anal Chim Acta 1046:192–198. https://doi.org/10.1016/j.aca.2018.09.047

    Article  CAS  PubMed  Google Scholar 

  92. Zhu GZ, Bao CJ, Liu WF, Yan XX, Liu LL, Xiao J, Chen CP (2019) Rapid detection of AGs using microchip capillary electrophoresis contactless conductivity detection. Curr Pharm Anal 15(1):9–16. https://doi.org/10.2174/1573412913666170918160004

    Article  CAS  Google Scholar 

  93. Shayesteh OH, Khosroshahi AG (2020) A polyA aptamer-based label-free colorimetric biosensor for the detection of kanamycin in human serum. Anal Methods-Uk 12(14):1858–1867. https://doi.org/10.1039/d0ay00326c

    Article  CAS  Google Scholar 

  94. Trofimchuk E, Nilghaz A, Sun S, Lu XN (2020) Determination of norfloxacin residues in foods by exploiting the coffee-ring effect and paper-based microfluidics device coupling with smartphone-based detection. J Food Sci 85(3):736–743. https://doi.org/10.1111/1750-3841.15039

    Article  CAS  PubMed  Google Scholar 

  95. Huang W, Zhang HY, Lai GS, Liu S, Li B, Yu AM (2019) Sensitive and rapid aptasensing of chloramphenicol by colorimetric signal transduction with a DNAzyme-functionalized gold nanoprobe. Food Chem 270:287–292. https://doi.org/10.1016/j.foodchem.2018.07.127

    Article  CAS  PubMed  Google Scholar 

  96. Wu YY, Huang PC, Wu FY (2020) A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics. Food Chem:304. https://doi.org/10.1016/j.foodchem.2019.125377

  97. Pourreza N, Ghomi M (2020) A network composed of gold nanoparticles and a poly(vinyl alcohol) hydrogel for colorimetric determination of ceftriaxone. Microchim Acta 187(2). https://doi.org/10.1007/s00604-019-4039-8

  98. Chen XX, Lin ZZ, Hong CY, Yao QH, Huang ZY (2020) A dichromatic label-free aptasensor for sulfadimethoxine detection in fish and water based on AuNPs color and fluorescent dyeing of double-stranded DNA with SYBR Green I. Food Chem:309. https://doi.org/10.1016/j.foodchem.2019.125712

  99. Masoudyfar Z, Elhami S (2019) Surface plasmon resonance of gold nanoparticles as a colorimetric sensor for indirect detection of cefixime. Spectrochim Acta A 211:234–238. https://doi.org/10.1016/j.saa.2018.12.007

    Article  CAS  Google Scholar 

  100. Xu CN, Ying YB, Ping JF (2019) Colorimetric aggregation assay for kanamycin using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification. Microchim Acta 186(7). https://doi.org/10.1007/s00604-019-3574-7

  101. Zhang ZP, Tian Y, Huang PC, Wu FY (2020) Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics. Talanta 208. https://doi.org/10.1016/j.talanta.2019.120342

  102. Zhang K, Cao JX, Wu YX, Hu FT, Li TH, Wang Y, Gan N (2019) A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles. Microchim Acta 186(2). https://doi.org/10.1007/s00604-018-3207-6

  103. Esmaelpourfarkhani M, Abnous K, Taghdisi SM, Chamsaz M (2019) A fluorometric assay for oxytetracycline based on the use of its europium(III) complex and aptamer-modified silver nanoparticles. Microchim Acta 186(5). https://doi.org/10.1007/s00604-019-3389-6

  104. Afsharipour R, Shabani AMH, Dadfarnia S, Kazemi E (2020) Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots. Microchim Acta 187(1). https://doi.org/10.1007/s00604-019-4001-9

  105. Qi HJ, Teng M, Liu M, Liu SX, Li J, Yu HP, Teng CB, Huang ZH, Liu H, Shao Q, Umar A, Ding T, Gao Q, Guo ZH (2019) Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J Colloid Interface Sci 539:332–341. https://doi.org/10.1016/j.jcis.2018.12.047

    Article  CAS  PubMed  Google Scholar 

  106. Wang YS, Ma TC, Ma SY, Liu YJ, Tian YP, Wang RN, Jiang YB, Hou DJ, Wang JL (2017) Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Microchim Acta 184(1):203–210. https://doi.org/10.1007/s00604-016-2011-4

    Article  CAS  Google Scholar 

  107. Wang JL, Lu TT, Hu Y, Wang XL, Wu YG (2020) A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk. Spectrochim Acta A:226. https://doi.org/10.1016/j.saa.2019.117651

  108. Kergaravat SV, Nagel OG, Althaus RL, Hernandez SR (2020) Magneto immunofluorescence assay for quinolone detection in bovine milk. Food Anal Methods. https://doi.org/10.1007/s12161-020-01749-9

  109. Su LT, Wang S, Wang LM, Yan ZY, Yi HY, Zhang DW, Shen GQ, Ma Y (2020) Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B. Spectrochim Acta A:225. https://doi.org/10.1016/j.saa.2019.117511

  110. Liu WS, Qu XY, Zhu CF, Gao YH, Mao CJ, Song JM, Niu HL (2020) A two-dimensional zinc(II)-based metal-organic framework for fluorometric determination of ascorbic acid, chloramphenicol and ceftriaxone. Microchim Acta 187(2). https://doi.org/10.1007/s00604-019-3979-3

  111. Kuhnemund M, Hernandez-Neuta I, Sharif MI, Cornaglia M, Gijs MAM, Nilsson M (2017) Sensitive and inexpensive digital DNA analysis by microfluidic enrichment of rolling circle amplified single-molecules. Nucleic Acids Res 45(8)

  112. Sadeghi AS, Mohsenzadeh M, Abnous K, Taghdisi SM, Ramezani M (2018) Development and characterization of DNA aptamers against florfenicol: fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk. Talanta 182:193–201. https://doi.org/10.1016/j.talanta.2018.01.083

    Article  CAS  PubMed  Google Scholar 

  113. Duan Y, Wang LH, Gao ZQ, Wang HS, Zhang HX, Li H (2017) An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR. Talanta 165:671–676. https://doi.org/10.1016/j.talanta.2016.12.090

    Article  CAS  PubMed  Google Scholar 

  114. Abdullah SM, Rachid S (2020) On column binding a real-time biosensor for beta-lactam antibiotics quantification. Molecules 25(5). https://doi.org/10.3390/molecules25051248

  115. Ha NR, Jung IP, La IJ, Jung HS, Yoon MY (2017) Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor. Sci Rep-Uk 7. https://doi.org/10.1038/srep40305

  116. El Hassani NE, Baraket A, Boudjaoui S, Neto ETT, Bausells J, El Bari N, Bouchikhi B, Elaissari A, Errachid A, Zine N (2019) Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical BioMEMS. Biosens Bioelectron 130:330–337. https://doi.org/10.1016/j.bios.2018.09.052

    Article  CAS  Google Scholar 

  117. Wang WJ, Gong ZJ, Yang SW, Xiong TT, Wang DM, Fan MK (2020) Fluorescent and visual detection of norfloxacin in aqueous solutions with a molecularly imprinted polymer coated paper sensor. Talanta 208. https://doi.org/10.1016/j.talanta.2019.120435

  118. Lin HG, Fang FX, Zang JH, Su JL, Tian QY, Kankala RK, Lin XX (2020) A fluorescent sensor-assisted paper-based competitive lateral flow immunoassay for the rapid and sensitive detection of ampicillin in hospital wastewater. Micromachines-Basel 11(4). https://doi.org/10.3390/mi11040431

  119. Kunstmann S, Engstrom O, Wehle M, Widmalm G, Santer M, Barbirz S (2020) Increasing the affinity of an O-antigen polysaccharide binding site in Shigella flexneri bacteriophage Sf6 tailspike protein. Chem-Eur J. https://doi.org/10.1002/chem.202000495

  120. Caglayan MO (2020) Aptamer-based ellipsometric sensor for ultrasensitive determination of aminoglycoside group antibiotics from dairy products. J Sci Food Agric. https://doi.org/10.1002/jsfa.10372

  121. Wang J, Ma K, Yin HS, Zhou YL, Ai SY (2018) Aptamer based voltammetric determination of ampicillin using a single-stranded DNA binding protein and DNA functionalized gold nanoparticles. Microchim Acta 185(1). https://doi.org/10.1007/s00604-017-2566-8

  122. Ye T, Peng Y, Yuan M, Cao H, Yu JS, Li Y, Xu F (2019) A “turn-on” fluorometric assay for kanamycin detection by using silver nanoclusters and surface plasmon enhanced energy transfer. Microchim Acta 186(1). https://doi.org/10.1007/s00604-018-3161-3

  123. Blidar A, Feier B, Tertis M, Galatus R, Cristea C (2019) Electrochemical surface plasmon resonance (EC-SPR) aptasensor for ampicillin detection. Anal Bioanal Chem 411(5):1053–1065. https://doi.org/10.1007/s00216-018-1533-5

    Article  CAS  PubMed  Google Scholar 

  124. Zhang B, Sun Y, Pang K, Wang X (2018) High-performance bimetallic SPR sensor for ciprofloxacin based on molecularly imprinted polymer. In: Mohseni H, Agahi MH, Razeghi M (eds) Biosensing and nanomedicine Xi, vol 10728. Proceedings of SPIE. https://doi.org/10.1117/12.2320083

  125. Altintas Z (2018) Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs. Sci Rep-Uk 8. https://doi.org/10.1038/s41598-018-29585-2

  126. Fernandez F, Garcia-Lopez O, Tellechea E, Asensio AC, Cornago I (2016) LSPR cuvette for real-time biosensing by using a common spectrophotometer. IEEE Sensors J 16(11):4158–4165. https://doi.org/10.1109/jsen.2016.2544953

    Article  Google Scholar 

  127. Wu Y, Jiang S, Fu ZF (2020) Employment of teicoplanin-coated magnetic particles for quantifying gram-positive bacteria via catalase-catalyzed hydrolysis reaction of H2O2. Talanta 211. https://doi.org/10.1016/j.talanta.2020.120728

  128. Li ZB, Cui PL, Liu J, Liu JX, Wang JP (2020) Production of generic monoclonal antibody and development of chemiluminescence immunoassay for determination of 32 sulfonamides in chicken muscle. Food Chem 311. https://doi.org/10.1016/j.foodchem.2019.125966

  129. Li YY, Du QQ, Zhang XD, Huang YM (2020) Ratiometric detection of tetracycline based on gold nanocluster enhanced Eu3+ fluorescence. Talanta 206. https://doi.org/10.1016/j.talanta.2019.120202

  130. Amjadi M, Hallaj T, Mirbirang F (2020) A chemiluminescence reaction consisting of manganese(IV), sodium sulfite, and sulfur- and nitrogen-doped carbon quantum dots, and its application for the determination of oxytetracycline. Microchim Acta 187(3). https://doi.org/10.1007/s00604-020-4168-0

  131. Das S, Ihssen J, Wick L, Spitz U, Shabat D (2020) Chemiluminescent carbapenem-based molecular probe for detection of carbapenemase activity in live bacteria. Chem-Eur J 26(16):3647–3652. https://doi.org/10.1002/chem.202000217

    Article  CAS  PubMed  Google Scholar 

  132. Yang L, Ni HJ, Li CL, Zhang XY, Wen K, Ke YB, Yang HJ, Shi WM, Zhang SX, Shen JZ, Wang ZH (2019) Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers. Sensor Actuat B-Chem 281:801–811. https://doi.org/10.1016/j.snb.2018.10.143

    Article  CAS  Google Scholar 

  133. Li J, Lu SY, Xiang JX, Xu X, Wei LJ, Cheng XL (2019) Class-specific determination of fluoroquinolones based on a novel chemiluminescence system with molecularly imprinted polymers. Food Chem 298. https://doi.org/10.1016/j.foodchem.2019.125066

  134. Sun YL, Dai YX, Zhu XD, Han R, Wang XY, Luo CN (2020) A nanocomposite prepared from bifunctionalized ionic liquid, chitosan, graphene oxide and magnetic nanoparticles for aptamer-based assay of tetracycline by chemiluminescence. Microchim Acta 187(1). https://doi.org/10.1007/s00604-019-4012-6

  135. Wang JJ, Ahmad W, Hassan MM, Zareef M, Viswadevarayalu A, Arslan M, Li HH, Chen QS (2020) Landing microextraction sediment phase onto surface enhanced Raman scattering to enhance sensitivity and selectivity for chromium speciation in food and environmental samples. Food Chem 323. https://doi.org/10.1016/j.foodchem.2020.126812

  136. Figueiredo MLB, Martin CS, Furini LN, Rubira RJG, Batagin-Neto A, Alessio P, Constantino CJL (2020) Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species. Appl Surf Sci 522. https://doi.org/10.1016/j.apsusc.2020.146466

  137. Zhou CY, Yang YJ, Li HF, Gao F, Song CY, Yang DL, Xu F, Liu N, Ke YG, Su S, Wang PF (2020) Programming surface-enhanced Raman scattering of DNA origami-templated metamolecules. Nano Lett 20(5):3155–3159. https://doi.org/10.1021/acs.nanolett.9b05161

    Article  CAS  PubMed  Google Scholar 

  138. Zhang L, Zhu TY, Yang C, Jang HY, Jang HJ, Liu LC, Park S (2020) Synthesis of monolayer gold nanorings sandwich film and its higher surface-enhanced Raman scattering intensity. Nanomaterials-Basel 10(3). https://doi.org/10.3390/nano10030519

  139. Zhou SS, Lu C, Li YZ, Xue L, Zhao CY, Tian GF, Bao YM, Tang LH, Lin JH, Zheng JK (2020) Gold nanobones enhanced ultrasensitive surface-enhanced Raman scattering aptasensor for detecting Escherichia coil O157:H7. Acs Sensors 5(2):588–596. https://doi.org/10.1021/acssensors.9b02600

    Article  CAS  PubMed  Google Scholar 

  140. Zhang ZY, Li YW, Frisch J, Bar M, Rappich J, Kneipp J (2020) In situ surface-enhanced Raman scattering shows ligand-enhanced hot electron harvesting on silver, gold, and copper nanoparticles. J Catal 383:153–159. https://doi.org/10.1016/j.jcat.2020.01.006

    Article  CAS  Google Scholar 

  141. Zhang XY, Yang S, Yang LL, Zhang DX, Sun YS, Pang ZY, Yang JH, Chen L (2020) Carrier dynamic monitoring of a pi-conjugated polymer: a surface-enhanced Raman scattering method. Chem Commun 56(18):2779–2782. https://doi.org/10.1039/c9cc09426a

    Article  CAS  Google Scholar 

  142. Zhang D, Liang P, Yu Z, Xia J, Ni DJ, Wang D, Zhou YF, Cao Y, Chen J, Chen JL, Jin SZ (2020) Self-assembled “bridge” substance for organochlorine pesticides detection in solution based on surface enhanced Raman scattering. J Hazard Mater 382. https://doi.org/10.1016/j.jhazmat.2019.121023

  143. Zhang CY, Zhao BC, Hao R, Wang Z, Hao YW, Zhao B, Liu YQ (2020) Graphene oxide-highly anisotropic noble metal hybrid systems for intensified surface enhanced Raman scattering and direct capture and sensitive discrimination in PCBs monitoring. J Hazard Mater 385. https://doi.org/10.1016/j.jhazmat.2019.121510

  144. Si YM, Xu L, Wang NN, Zheng J, Yang RH, Li JS (2020) Target microRNA-responsive DNA hydrogel-based surface-enhanced Raman scattering sensor arrays for microRNA-marked cancer screening. Anal Chem 92(3):2649–2655. https://doi.org/10.1021/acs.analchem.9b04606

    Article  CAS  PubMed  Google Scholar 

  145. Rubira RJG, Camacho SA, Martin CS, Mejia-Salazar JR, Reyes Gomez F, da Silva RR, de Oliveira ON, Alessio P, Constantino CJL (2020) Designing silver nanoparticles for detecting levodopa (3,4-Dihydroxyphenylalanine, L-Dopa) using surface-enhanced Raman scattering (SERS). Sensors-Basel 20(1). https://doi.org/10.3390/s20010015

  146. Lu H, Jin ML, Ma QL, Yan ZB, Liu ZP, Wang X, Akinoglu EM, van den Berg A, Zhou GF, Shui LL (2020) Ag nano-assemblies on Si surface via CTAB-assisted galvanic reaction for sensitive and reliable surface-enhanced Raman scattering detection. Sensor Actuat B-Chem:304. https://doi.org/10.1016/j.snb.2019.127224

  147. Lin CH, Wang PH, Wang TH, Yang LJ, Wen TC (2020) The surface-enhanced Raman scattering detection of N-nitrosodimethylamine and N-nitrosodiethylamine via gold nanorod arrays with a chemical linkage of zwitterionic copolymer. Nanoscale 12(2):1075–1082. https://doi.org/10.1039/c9nr09404k

    Article  CAS  PubMed  Google Scholar 

  148. Li XY, Yuan G, Yu WL, Xing J, Zou YT, Zhao C, Kong WC, Yu Z, Guo CL (2020) A self-driven microfluidic surface-enhanced Raman scattering device for Hg2+ detection fabricated by femtosecond laser. Lab Chip 20(2):414–423. https://doi.org/10.1039/c9lc00883g

    Article  CAS  PubMed  Google Scholar 

  149. Wang WE, Sang QQ, Yang M, Du J, Yang LB, Jiang X, Han XX, Zhao B (2020) Detection of several quinolone antibiotic residues in water based on Ag-TiO2 SERS strategy. Sci Total Environ 702. https://doi.org/10.1016/j.scitotenv.2019.134956

  150. Frosch T, Knebl A, Frosch T (2020) Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy. Nanophotonics-Berlin 9(1):19–37. https://doi.org/10.1515/nanoph-2019-0401

    Article  CAS  Google Scholar 

  151. Nguyen AH, Ma X, Park HG, Sim SJ (2019) Low-blinking SERS substrate for switchable detection of kanamycin. Sensor Actuat B-Chem 282:765–773. https://doi.org/10.1016/j.snb.2018.11.037

    Article  CAS  Google Scholar 

  152. Zhang Y, Wang ZW, Zhang Q, Song YQ, Zhang B, Ren TR, Yang HF, Wang F (2020) Polyethyleneimine mediated interaction for highly sensitive, magnetically assisted detection of tetracycline hydrochloride. Appl Surf Sci 505. https://doi.org/10.1016/j.apsusc.2019.144543

  153. Akbarzadeh S, Khajesharifi H, Thompson M (2020) Simultaneous determination of streptomycin and oxytetracycline using a oracet-blue/silver-nanoparticle/graphene-oxide/modified screen-printed electrode. Biosensors-Basel 10(3). https://doi.org/10.3390/bios10030023

  154. Ayankojo AG, Reut J, Ciocan V, Opik A, Syritski V (2020) Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 209. https://doi.org/10.1016/j.talanta.2019.120502

  155. Bharatula LD, Marsili E, Kwan JJ (2020) Impedimetric detection of Pseudomonas aeruginosa attachment on flexible ITO-coated polyethylene terephthalate substrates. Electrochim Acta:332. https://doi.org/10.1016/j.electacta.2019.135390

  156. Gill AAS, Singh S, Agrawal N, Nate Z, Chiwunze TE, Thapliyal NB, Chauhan R, Karpoormath R (2020) A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Microchim Acta 187(1). https://doi.org/10.1007/s00604-019-4015-3

  157. Roushani M, Rahmati Z, Farokhi S, Hoseini SJ, Fath RH (2020) The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-aminopropyl) triethoxysilane and silver nanoparticles. Mat Sci Eng C-Mater 108. https://doi.org/10.1016/j.msec.2019.110388

  158. Sharma N, Selvam SP, Yun K (2020) Electrochemical detection of amikacin sulphate using reduced graphene oxide and silver nanoparticles nanocomposite. Appl Surf Sci:512. https://doi.org/10.1016/j.apsusc.2020.145742

  159. Song JL, Huang MH, Jiang N, Zheng SY, Mu TW, Meng LJ, Liu YB, Liu JY, Chen G (2020) Ultrasensitive detection of amoxicillin by TiO2-g-C3N4@AuNPs impedimetric aptasensor: fabrication, optimization, and mechanism. J Hazard Mater 391. https://doi.org/10.1016/j.jhazmat.2020.122024

  160. Starzec K, Cristea C, Tertis M, Feier B, Wieczorek M, Koscielniak P, Kochana J (2020) Employment of electrostriction phenomenon for label-free electrochemical immunosensing of tetracycline. Bioelectrochemistry 132. https://doi.org/10.1016/j.bioelechem.2019.107405

  161. Wong A, Santos AM, Cincotto FH, Moraes FC, Fatibello O, Sotomayor MDPT (2020) A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 206. https://doi.org/10.1016/j.talanta.2019.120252

  162. Yu J, Tang WX, Wang F, Zhang F, Wang QJ, He PG (2020) Simultaneous detection of streptomycin and kanamycin based on an all-solid-state potentiometric aptasensor array with a dual-internal calibration system. Sensor Actuat B-Chem 311:0925–4005. https://doi.org/10.1016/j.snb.2020.127857

    Article  CAS  Google Scholar 

  163. Shen ZP, He LY, Cao YT, Hong F, Zhang K, Hu FT, Lin JY, Wu DZ, Gan N (2019) Multiplexed electrochemical aptasensor for antibiotics detection using metallic-encoded apoferritin probes and double stirring bars-assisted target recycling for signal amplification. Talanta 197:491–499. https://doi.org/10.1016/j.talanta.2018.12.018

    Article  CAS  PubMed  Google Scholar 

  164. Zhou N, Ma YS, Hu B, He LH, Wang SJ, Zhang ZH, Lu SY (2019) Construction of Ce-MOF@COF hybrid nanostructure: label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens Bioelectron 127:92–100. https://doi.org/10.1016/j.bios.2018.12.024

    Article  CAS  PubMed  Google Scholar 

  165. Wei XB, Zhang ZR, Zhang LF, Xu XH (2019) Synthesis of molecularly imprinted polymers/NiCo2O4 nanoneedle arrays on 3D graphene electrode for determination of sulfadimidine residue in food. J Mater Sci 54(3):2066–2078. https://doi.org/10.1007/s10853-018-2975-z

    Article  CAS  Google Scholar 

  166. Xiao JX, Hu XL, Wang K, Zou YM, Gyimah E, Yakubu S, Zhang Z (2020) A novel signal amplification strategy based on the competitive reaction between 2D Cu-TCPP(Fe) and polyethyleneimine (PEI) in the application of an enzyme-free and ultrasensitive electrochemical immunosensor for sulfonamide detection. Biosens Bioelectron 150. https://doi.org/10.1016/j.bios.2019.111883

  167. Sebastian N, Yu WC, Balram D (2019) Electrochemical detection of an antibiotic drug chloramphenicol based on a graphene oxide/hierarchical zinc oxide nanocomposite. Inorg Chem Front 6(1):82–93. https://doi.org/10.1039/c8qi01000e

    Article  CAS  Google Scholar 

  168. Kokulnathan T, Chen SM (2019) Praseodymium vanadate-decorated sulfur-doped carbon nitride hybrid nanocomposite: the role of a synergistic electrocatalyst for the detection of metronidazole. ACS Appl Mater Interfaces 11(8):7893–7905. https://doi.org/10.1021/acsami.8b09204

    Article  CAS  PubMed  Google Scholar 

  169. Dehghani M, Nasirizadeh N, Yazdanshenas ME (2019) Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer. Mat Sci Eng C-Mater 96:654–660. https://doi.org/10.1016/j.msec.2018.12.002

    Article  CAS  Google Scholar 

  170. Yadav AK, Dhiman TK, Lakshmi GBVS, Berlina AN, Solanki PR (2020) A highly sensitive label-free amperometric biosensor for norfloxacin detection based on chitosan-yttria nanocomposite. Int J Biol Macromol 151:566–575. https://doi.org/10.1016/j.ijbiomac.2020.02.089

    Article  CAS  PubMed  Google Scholar 

  171. Chen CL, Lv XC, Lei W, Wu Y, Feng SS, Ding Y, Lv JJ, Hao QL, Chen SM (2019) Amoxicillin on polyglutamic acid composite three-dimensional graphene modified electrode: reaction mechanism of amoxicillin insights by computational simulations. Anal Chim Acta 1073:22–29. https://doi.org/10.1016/j.aca.2019.04.052

    Article  CAS  PubMed  Google Scholar 

  172. Balasubramanian P, Annalakshmi M, Chen SM, Sathesh T, Balamurugan TST (2019) Ultrasonic energy-assisted preparation of beta-cyclodextrin-carbon nanofiber composite: application for electrochemical sensing of nitrofurantoin. Ultrason Sonochem 52:391–400. https://doi.org/10.1016/j.ultsonch.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  173. Wang SJ, Li ZZ, Duan FH, Hu B, He LH, Wang MH, Zhou N, Jia QJ, Zhang ZH (2019) Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: label-free aptasensor for ultrasensitive tobramycin detection. Anal Chim Acta 1047:150–162. https://doi.org/10.1016/j.aca.2018.09.064

    Article  CAS  PubMed  Google Scholar 

  174. Liu XK, Hu MY, Wang MH, Song YP, Zhou N, He LH, Zhang ZH (2019) Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens Bioelectron 123:59–68. https://doi.org/10.1016/j.bios.2018.09.089

    Article  CAS  PubMed  Google Scholar 

  175. Chinnappan R, Eissa S, Alotaibi A, Siddiqua A, Alsager OA, Zourob M (2020) In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Anal Chim Acta 1101:149–156. https://doi.org/10.1016/j.aca.2019.12.023

    Article  CAS  PubMed  Google Scholar 

  176. Sultana A, Sazawa K, Islam MS, Sugawara K, Kuramitz H (2019) Determination of tetracycline by microdroplet hydrodynamic adsorptive voltammetry using a multiwalled carbon nanotube paste rotating disk electrode. Anal Lett 52(7):1153–1164. https://doi.org/10.1080/00032719.2018.1523911

    Article  CAS  Google Scholar 

  177. Liu CQ, Xie D, Liu P, Xie SL, Wang SS, Cheng FL, Zhang M, Wang LS (2019) Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film. Microchim Acta 186(1). https://doi.org/10.1007/s00604-018-3146-2

  178. Mutharani B, Chen TW, Chen SM, Liu XH (2020) Reversibly switchable ruthenium hybrid thermo-responsive electrocatalyst- based voltammetric sensor for sensitive detection of sulfamethazine in milk samples. Sensor Actuat B-Chem:316. https://doi.org/10.1016/j.snb.2020.128103

  179. Stoian IA, Iacob BC, Dudas CL, Barbu-Tudoran L, Bogdan D, Marian IO, Bodoki E, Oprean R (2020) Biomimetic electrochemical sensor for the highly selective detection of azithromycin in biological samples. Biosens Bioelectron 155. https://doi.org/10.1016/j.bios.2020.112098

  180. Feng LM, Xue Q, Liu F, Cao QP, Feng JJ, Yang L, Zhang FL (2020) Voltammetric determination of ofloxacin by using a laser-modified carbon glassy electrode. Microchim Acta 187(1). https://doi.org/10.1007/s00604-019-4065-6

  181. He BS, Yan SS (2019) Voltammetric kanamycin aptasensor based on the use of thionine incorporated into Au@Pt core-shell nanoparticles. Microchim Acta 186(2):77–84. https://doi.org/10.1007/s00604-018-3188-5

    Article  CAS  Google Scholar 

  182. Cheng ST, Liu HM, Zhang H, Chu GL, Guo YM, Sun X (2020) Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Sensor Actuat B-Chem 304:0925–4005. https://doi.org/10.1016/j.snb.2019.127367

    Article  CAS  Google Scholar 

  183. Shan XL, Pan YT, Dai FZ, Chen XH, Wang WC, Chen ZD (2020) ZnO/CNT-COOHs based solid-state ECL sensor for tetracycline detection in fishpond water. Microchem J:155. https://doi.org/10.1016/j.microc.2020.104708

  184. He ZJ, Kang TF, Lu LP, Cheng SY (2020) An electrochemiluminescence aptamer sensor for chloramphenicol based on GO-QDs nanocomposites and enzyme-linked aptamers. J Electroanal Chem:860. https://doi.org/10.1016/j.jelechem.2020.113870

  185. Tong XY, Jin SY, Zhao YD, Gai Y, Yifeng E, Li D (2020) Facile nano-free electrochemiluminescence biosensor for detection of sulphamethoxazole via tris(2,2'-bipyridyl)ruthenium(II) and N-methyl pyrrolidone recognition. Iet Nanobiotechnol 14(2):167–171. https://doi.org/10.1049/iet-nbt.2019.0257

    Article  PubMed  Google Scholar 

  186. Feng DF, Tan XC, Wu YY, Ai CH, Luo YN, Chen QY, Han HY (2019) Electrochemiluminecence nanogears aptasensor based on MIL-53(Fe)@CdS for multiplexed detection of kanamycin and neomycin. Biosens Bioelectron 129:100–106. https://doi.org/10.1016/j.bios.2018.12.050

    Article  CAS  PubMed  Google Scholar 

  187. Taokaenchan N, Tangkuaram T, Pookmanee P, Phaisansuthichol S, Kuimalee S, Satienperakul S (2015) Enhanced electrogenerated chemiluminescence of tris(2,2'-bipyridyl) ruthenium(II) system by L-cysteine-capped CdTe quantum dots and its application for the determination of nitrofuran antibiotics. Biosens Bioelectron 66:231–237. https://doi.org/10.1016/j.bios.2014.11.030

    Article  CAS  PubMed  Google Scholar 

  188. Hu YX, Su LY, Wang S, Guo ZY, Hu YF, Xie HZ (2019) A ratiometric electrochemiluminescent tetracycline assay based on the combined use of carbon nanodots, Ru(bpy)(3)2+, and magnetic solid phase microextraction. Microchim Acta 186(8):512–522. https://doi.org/10.1007/s00604-019-3611-6

    Article  CAS  Google Scholar 

  189. Qiao YF, Li J, Li HB, Fang HL, Fan DH, Wang W (2016) A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Biosens Bioelectron 86:315–320. https://doi.org/10.1016/j.bios.2016.06.062

    Article  CAS  PubMed  Google Scholar 

  190. Cui ZK, Guo SS, Yan JH, Li F, He WW (2020) BiOBr nanosheets with oxygen vacancies and lattice strain for enhanced photoelectrochemical sensing of doxycycline. Appl Surf Sci:512

  191. Yan PC, Dong JT, Mo Z, Xu L, Qian JC, Xia JX, Zhang JM, Li HN (2020) Enhanced photoelectrochemical sensing performance of graphitic carbon nitride by nitrogen vacancies engineering. Biosens Bioelectron:148. https://doi.org/10.1016/j.bios.2019.111802

  192. Li Y, Bu YY, Jiang FQ, Dai XY, Ao JP (2020) Fabrication of ultra-sensitive photoelectrochemical aptamer biosensor: based on semiconductor/DNA interfacial multifunctional reconciliation via 2D-C3N4. Biosens Bioelectron 150. https://doi.org/10.1016/j.bios.2019.111903

  193. Zhang Z, Zhou HF, Jiang CY, Wang YP (2020) Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol. Electrochim Acta 344. https://doi.org/10.1016/j.electacta.2020.136161

  194. Chen Y, Zhou YL, Yin HS, Li F, Li H, Guo RZ, Han YH, Ai SY (2020) Photoelectrochemical biosensor for histone acetyltransferase detection based on ZnO quantum dots inhibited photoactivity of BiOI nanoflower. Sensor Actuat B-Chem 307. https://doi.org/10.1016/j.snb.2019.127633

  195. Li HB, Li YL, Li J, Yang F, Xu LQ, Wang W, Yao XX, Yin YD (2020) Magnetic-optical core-shell nanostructures for highly selective photoelectrochemical aptasensing. Anal Chem 92(5):4094–4100. https://doi.org/10.1021/acs.analchem.9b05762

    Article  CAS  PubMed  Google Scholar 

  196. Zhang X, Yan T, Wu TT, Feng YX, Sun M, Yan LG, Du B, Wei Q (2019) Fabrication of hierarchical MIL-68(in)-NH2/MWCNT/CdS composites for constructing label-free photoelectrochemical tetracycline aptasensor platform. Biosens Bioelectron 135:88–94. https://doi.org/10.1016/j.bios.2019.03.062

    Article  CAS  PubMed  Google Scholar 

  197. Wang TT, Yin HS, Zhang YT, Wang LK, Du Y, Zhuge YP, Ai SY (2019) Electrochemical aptasensor for ampicillin detection based on the protective effect of aptamer-antibiotic conjugate towards DpnII and Exo III digestion. Talanta 197:42–48. https://doi.org/10.1016/j.talanta.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  198. Adhikari S, Selvaraj S, Kim DH (2019) Construction of heterojunction photoelectrode via atomic layer deposition of Fe2O3 on Bi2WO6 for highly efficient photoelectrochemical sensing and degradation of tetracycline. Appl Catal B-Environ 244:11–24. https://doi.org/10.1016/j.apcatb.2018.11.043

    Article  CAS  Google Scholar 

  199. Zhou YL, Sui CJ, Yin HS, Wang Y, Wang MH, Ai SY (2018) Tungsten disulfide (WS2) nanosheet-based photoelectrochemical aptasensing of chloramphenicol. Microchim Acta 185(10). https://doi.org/10.1007/s00604-018-2970-8

  200. Yan PC, Jiang DS, Tian YH, Xu L, Qian JC, Li HN, Xi JX, Li HM (2018) A sensitive signal-on photoelectrochemical sensor for tetracycline determination using visible-light-driven flower-like CN/BiOBr composites. Biosens Bioelectron 111:74–81. https://doi.org/10.1016/j.bios.2018.03.054

    Article  CAS  PubMed  Google Scholar 

  201. Peng JY, Huang Q, Zhuge WF, Liu YX, Zhang CZ, Yang W, Xiang G (2018) Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin. Biosens Bioelectron 106:212–218. https://doi.org/10.1016/j.bios.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  202. Li FL, Wang XY, Sun X, Guo YM (2018) Multiplex electrochemical aptasensor for detecting multiple antibiotics residues based on carbon fiber and mesoporous carbon-gold nanoparticles. Sensor Actuat B-Chem 265:217–226. https://doi.org/10.1016/j.snb.2018.03.042

    Article  CAS  Google Scholar 

  203. Li Y, Tian JY, Yuan T, Wang P, Lu JS (2017) A sensitive photoelectrochemical aptasensor for oxytetracycline based on a signal “switch off-on” strategy. Sensor Actuat B-Chem 240:785–792. https://doi.org/10.1016/j.snb.2016.09.042

    Article  CAS  Google Scholar 

  204. Li HB, Li J, Qiao YF, Fang HL, Fan DH, Wang W (2017) Nano-gold plasmon coupled with dual-function quercetin for enhanced photoelectrochemical aptasensor of tetracycline. Sensor Actuat B-Chem 243:1027–1033

    Article  CAS  Google Scholar 

  205. Zhang XP, Zhang RR, Yang AJ, Wang Q, Kong RM, Qu FL (2017) Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite. Microchim Acta 184(11):4367–4374

    Article  CAS  Google Scholar 

  206. Yan K, Liu Y, Yang YH, Zhang JD (2015) A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline. Anal Chem 87(24):12215–12220

    Article  CAS  Google Scholar 

  207. Zhang RF, Zhang J, Qu XN, Li SS, Zhao YH, Liu S, Wang Y, Huang JD, Yu JH (2020) Efficient strand displacement amplification via stepwise movement of a bipedal DNA walker on an electrode surface for ultrasensitive detection of antibiotics. Analyst 145(8):2975–2981. https://doi.org/10.1039/d0an00139b

    Article  CAS  PubMed  Google Scholar 

  208. Ma LY, Petersen M, Lu XN (2020) Identification and antimicrobial susceptibility testing of campylobacter using a microfluidic lab-on-a-chip device. Appl Environ Microbiol 86(9). https://doi.org/10.1128/AEM.00096-20

  209. Mousavi PS, Smith SJ, Chen JB, Karlikow M, Tinafar A, Robinson C, Liu WH, Ma D, Green AA, Kelley SO, Pardee K (2020) A multiplexed, electrochemical interface for gene-circuit-based sensors. Nat Chem 12(1):48–55. https://doi.org/10.1038/s41557-019-0366-y

    Article  CAS  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China (NNSFC 61804158), Shanghai Sailing Program (18YF1428300), the Program of Science and Technology Commission of Shanghai Municipality (17JC1401001), and STS program (KFJ-STS-ZDTP-061) provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Liang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhao, J. & Liang, L. Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials. Microchim Acta 188, 21 (2021). https://doi.org/10.1007/s00604-020-04671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04671-3

Keywords

Navigation