Skip to main content
Log in

Hydroquinone colorimetric sensing based on platinum deposited on CdS nanorods as peroxidase mimics

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Pt deposited on CdS nanorods (Pt/CdS) have been prepared via the UV light photoreduction method. The Pt/CdS nanocomposites possess highly significant peroxidase-like activity with the assistance of the colorless substrate 3,3,5,5-tetramethylbenzidine (TMB). In the presence of peroxidase mimic Pt/CdS, TMB is quickly oxidized into a typical blue product (oxTMB, which has an obvious absorption at 652 nm) by H2O2 only in 3 min, which is easily detected visually. The catalytic activity of Pt/CdS originates from the accelerated electron transfer between the reactants. Combining the peroxidase-like activity of Pt/CdS with the blue change of TMB, a fast colorimetric sensing platform for detection of H2O2 has been constructed with a linear range 0.10–1.00 mM and a detection limit of 45.5 μM. The platform developed is further used to detect hydroquinone (HQ) in the range1.0–10 μM with a lower detection limit of 0.165 μM. The colorimetric platform has a potential to detect HQ residue in real water samples with recoveries ranging from 83.56 to 91.76%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Wang J, Park J-N, Wei X-Y, Lee CW (2003) Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe2+, Co2+ ion-exchanged Naβ zeolite. Chem Commun 5:628–629. https://doi.org/10.1039/b212296k

    Article  CAS  Google Scholar 

  2. Guo Q, Huang J, Chen P, Liu Y, Hou H, You T (2012) Simultaneous determination of catechol and hydroquinone using electrospun carbon nanofibers modified electrode. Sensor Actuat B-Chem 163(1):179–185. https://doi.org/10.1016/j.snb.2012.01.032

    Article  CAS  Google Scholar 

  3. World Health Organization (1996) Hydroquinone health and safety guide. Geneva World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/38140/924151101X-eng.pdf

  4. Marrubini G, Calleri E, Coccini T, Castoldi AF, Manzo L (2005) Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection. Chromatographia 62(1–2):25–31. https://doi.org/10.1365/s10337-005-0570-3

    Article  CAS  Google Scholar 

  5. Yang H, Zha J, Zhang P, Qin Y, Chen T, Ye F (2017) Fabrication of CeVO4 as nanozyme for facile colorimetric discrimination of hydroquinone from resorcinol and catechol. Sensor Actuat B-Chem 247:247469–247478. https://doi.org/10.1016/j.snb.2017.03.042

    Article  CAS  Google Scholar 

  6. Nghia NN, Huy BT, Lee YI (2018) Colorimetric detection of chromium(VI) using graphene oxide nanoparticles acting as a peroxidase mimetic catalyst and 8-hydroxyquinoline as an inhibitor. Mikrochim Acta 186(1):36. https://doi.org/10.1007/s00604-018-3169-8

    Article  CAS  PubMed  Google Scholar 

  7. Liu H, Ding Y, Yang B, Liu Z, Liu Q, Zhang X (2018) Colorimetric and ultrasensitive detection of H2O2 based on Au/Co3O4 -CeOx nanocomposites with enhanced peroxidase-like performance. Sensor Actuat B-Chem 271:336–345. https://doi.org/10.1016/j.snb.2018.05.108

    Article  CAS  Google Scholar 

  8. Lyu H, Zhao X, Yao X, Chen W, Liu Z, Gao L, Fan G, Zhu X, Liu Q, Zhang X, Zhang X (2020) 3,4:9,10-perylene tetracarboxylic acid-modified zinc ferrite with the enhanced peroxidase activity for sensing of ascorbic acid. Colloids Surfaces A 586:124250. https://doi.org/10.1016/j.colsurfa.2019.124250

    Article  CAS  Google Scholar 

  9. Gao Y, Wu K, Li H, Chen W, Fu M, Yue K, Zhu X, Liu Q (2018) Glutathione detection based on peroxidase-like activity of Co3O4–Montmorillonite nanocomposites. Sensor Actuat B-Chem 273:1635–1639. https://doi.org/10.1016/j.snb.2018.07.091

    Article  CAS  Google Scholar 

  10. Ghasemipour P, Fattahi M, Rasekh B, Yazdian F (2020) Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalytic degradation of aniline. Sci Rep 10(1):4414. https://doi.org/10.1038/s41598-020-61367-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Payan A, Fattahi M, Roozbehani B (2018) Synthesis, characterization and evaluations of TiO2 nanostructures prepared from different titania precursors for photocatalytic degradation of 4-chlorophenol in aqueous solution. J Environ Health Sci Eng 16(1):41–54. https://doi.org/10.1007/s40201-018-0295-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shojaie A, Fattahi M, Jorfi S, Ghasemi B (2018) Synthesis and evaluations of Fe3O4–TiO2–Ag nanocomposites for photocatalytic degradation of 4-chlorophenol (4-CP): effect of Ag and Fe compositions. Int J Ind Chem 9(2):141–151. https://doi.org/10.1007/s40090-018-0145-4

    Article  CAS  Google Scholar 

  13. Ashouri R, Ghasemipoor P, Rasekh B, Yazdian F, Mofradnia SR, fattahi M. (2018) The effect of ZnO-based carbonaceous materials for degradation of benzoic pollutants: a review. Int J Environ Sci Technol 16(3):1729–1740. https://doi.org/10.1007/s13762-018-2056-5

    Article  CAS  Google Scholar 

  14. Hayati F, Isari AA, Anvaripour B, Fattahi M, Kakavandi B (2020) Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@CNT heterojunction composite: effective factors, pathway and biodegradability studies. Chem Eng J 381:122636. https://doi.org/10.1016/j.cej.2019.122636

    Article  CAS  Google Scholar 

  15. Liu H, Tian K, Ning J, Zhong Y, Zhang Z, Hu Y (2019) One-step solvothermal formation of Pt nanoparticles decorated Pt2+-doped α-Fe2O3 nanoplates with enhanced photocatalytic O2 evolution. ACS Catal 9(2):1211–1219. https://doi.org/10.1021/acscatal.8b03819

    Article  CAS  Google Scholar 

  16. Wang Z, Yang X, Yang J, Jiang Y, He N (2015) Peroxidase-like activity of mesoporous silica encapsulated Pt nanoparticle and its application in colorimetric immunoassay. Anal Chim Acta 862:53–63. https://doi.org/10.1016/j.aca.2014.12.046

    Article  CAS  PubMed  Google Scholar 

  17. Padmaja S, Jayakumar S (2019) Tunable luminescence and transmittance nature of CdS:PMMA nanocomposites for optoelectronic applications. Opt Laser Technol 112:112409–112412. https://doi.org/10.1016/j.optlastec.2018.11.038

    Article  CAS  Google Scholar 

  18. Liu Q, Zhu R, Jiang Y, Jia Q, Yang S, Shao Q, Wang D, Cui P (2014) The facile preparation of 5,10,15,20-tetrakis(4-carboxyl phenyl) porphyrin-CdS nanocomposites and their photocatalytic activity. Mater Sci Eng B 188:188106–188113. https://doi.org/10.1016/j.mseb.2014.05.002

    Article  CAS  Google Scholar 

  19. Yin XL, Liu J, Jiang WJ, Zhang X, Hu JS, Wan LJ (2015) Urchin-like Au@CdS/WO3 micro/nano heterostructure as a visible-light driven photocatalyst for efficient hydrogen generation. Chem Commun (Camb) 51(72):13842–13845. https://doi.org/10.1039/c5cc05211d

    Article  CAS  Google Scholar 

  20. Kolobov NS, Svintsitskiy DA, Kozlova EA, Selishchev DS, Kozlov DV (2017) UV-LED photocatalytic oxidation of carbon monoxide over TiO2 supported with noble metal nanoparticles. Chem Eng J 314:600–611. https://doi.org/10.1016/j.cej.2016.12.018

    Article  CAS  Google Scholar 

  21. Ding Y, Liu H, Gao L-N, Fu M, Luo X, Zhang X, Liu Q, Zeng R-C (2019) Fe-doped Ag2S with excellent peroxidase-like activity for colorimetric determination of H2O2. J Alloy Compd 785:1189–1197. https://doi.org/10.1016/j.jallcom.2019.01.225

    Article  CAS  Google Scholar 

  22. Rama Krishna Chava JYD, Kang M (2018) Smart hybridization of Au coupled CdS nanorods with few layered MoS2 nanosheets for high performance photocatalytic hydrogen evolution reaction. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b00249

  23. Hanifah MFR, Jaafar J, Othman MHD, Ismail AF, Rahman MA, Yusof N, Aziz F, Rahman NAA (2019) One-pot synthesis of efficient reduced graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electro-catalyst and its electro-catalytic performance toward methanol electro-oxidation reaction in direct methanol fuel cell. J Alloy Compd 793:232–246. https://doi.org/10.1016/j.jallcom.2019.04.114

    Article  CAS  Google Scholar 

  24. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  25. Chen X, Tian X, Su B, Huang Z, Chen X, Oyama M (2014) Au nanoparticles on citrate-functionalized graphene nanosheets with a high peroxidase-like performance. Dalton Trans 43(20):7449–7454. https://doi.org/10.1039/c3dt53316f

    Article  CAS  PubMed  Google Scholar 

  26. Ma M, Xie J, Zhang Y, Chen Z, Gu N (2013) Fe3O4@Pt nanoparticles with enhanced peroxidase-like catalytic activity. Mater Lett 105:36–39. https://doi.org/10.1016/j.matlet.2013.04.020

    Article  CAS  Google Scholar 

  27. Zhang L-p, Xing Y-p, Liu L-h, Zhou X-h, Shi H-c (2016) Fenton reaction-triggered colorimetric detection of phenols in water samples using unmodified gold nanoparticles. Sensor Actuat B-Chem 225:593–599. https://doi.org/10.1016/j.snb.2015.11.083

    Article  CAS  Google Scholar 

  28. Rajkumar C, Thirumalraj B, Chen S-M, Veerakumar P, Lin K-C (2018) Voltammetric determination of catechol and hydroquinone using nitrogen-doped multiwalled carbon nanotubes modified with nickel nanoparticles. Microchim Acta 185(8). https://doi.org/10.1007/s00604-018-2926-z

  29. Ren H, Zhang Y, Liu L, Li Y, Wang D, Zhang R, Zhang W, Li Y, Ye BC (2019) Synthesis of hollow Mo2C/carbon spheres, and their application to simultaneous electrochemical detection of hydroquinone, catechol, and resorcinol. Microchim Acta 186(5):306. https://doi.org/10.1007/s00604-019-3432-7

    Article  CAS  Google Scholar 

  30. Bao Y-W, Hua X-W, Ran H-H, Zeng J, Wu F-G (2019) Metal-doped carbon nanoparticles with intrinsic peroxidase-like activity for colorimetric detection of H2O2 and glucose. J Mater Chem B 7(2):296–304. https://doi.org/10.1039/c8tb02404a

    Article  CAS  PubMed  Google Scholar 

  31. Cai S, Han Q, Qi C, Lian Z, Jia X, Yang R, Wang C (2016) Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 8(6):3685–3693. https://doi.org/10.1039/c5nr08038j

    Article  CAS  PubMed  Google Scholar 

  32. Yang H, Yang R, Zhang P, Qin Y, Chen T, Ye F (2017) A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchim Acta 184(12):4629–4635. https://doi.org/10.1007/s00604-017-2509-4

    Article  CAS  Google Scholar 

  33. Qin W, Su L, Yang C, Ma Y, Zhang H, Chen X (2014) Colorimetric detection of sulfite in foods by a TMB-O2-Co3O4 nanoparticles detection system. J Agric Food Chem 62(25):5827–5834. https://doi.org/10.1021/jf500950p

    Article  CAS  PubMed  Google Scholar 

  34. Fattahi M, Kazemeini M, Khorasheh F, Rashidi A (2014) An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium–graphene catalyst aiming at minimizing of the COx species. Chem Eng J 250:25014–25024. https://doi.org/10.1016/j.cej.2014.04.002

    Article  CAS  Google Scholar 

  35. Barghi B, Fattahi M, Khorasheh F (2014) The modeling of kinetics and catalyst deactivation in propane dehydrogenation over Pt-Sn/γ-Al2O3in presence of water as an oxygenated additive. Petrol Sci Technol 32(10):1139–1149. https://doi.org/10.1080/10916466.2011.631071

    Article  CAS  Google Scholar 

Download references

Funding

Finance supports from the National Natural Science Foundation of China (Grant No. 21971152), Natural Science Foundation of Shandong Province (Grant No. ZR2018MB002 and ZR2018MEE003), the open fund of Qingdao University of Science and Technology (No. QUSTHX202001), and Innovation Fund of Science & Technology of Graduate Students (SDKDYC190216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Lyu, H., Yao, X. et al. Hydroquinone colorimetric sensing based on platinum deposited on CdS nanorods as peroxidase mimics. Microchim Acta 187, 587 (2020). https://doi.org/10.1007/s00604-020-04451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04451-z

Keywords

Navigation