Skip to main content
Log in

Self-powered cathodic photoelectrochemical aptasensor based on in situ–synthesized CuO-Cu2O nanowire array for detecting prostate-specific antigen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A facile and sensitive self-powered cathodic photoelectrochemical (PEC) aptasensor is reported for the detection of prostate-specific antigen (PSA) based on CuO-Cu2O nanowire array grown on Cu mesh (CuO-Cu2O NWA/CM) as electrode. The mixed narrow band gaps of the CuO-Cu2O heterostructure ensured its wide absorption band, effective electron/hole separation, and high photocatalytic activity in the visible region. In addition, nanowires directly grown on the substrate provided high specific surface area and exposed abundant active sites, thus guaranteeing its high photocatalytic efficiency. Therefore, the self-powered sensor exhibited favorable analytical performance with fast response, wide linear ranges of 0.01 to 5 ng/mL and 5 to 100 ng/mL, an acceptable detection limit of 3 pg/mL, and reasonable selectivity and stability. The proposed CuO-Cu2O NWA/CM can be considered a promising visible light-responsive photoactive material for fabrication of PEC aptasensor with high performance.

a Schematic illustration of construction process of PEC sensing platform based on the CuO-Cu2O composite for PSA detection. b Schematic mechanism of the operating PEC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang XP, Xu R, Sun X, Wang YG, Ren X, Du B, Wu D, Wei Q (2017) Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosens Bioelectron 96:239–245

    CAS  PubMed  Google Scholar 

  2. Huang L, Chen J, Yu Z (2020) Self-powered temperature sensor with Seebeck effect transduction for photothermal-thermoelectric coupled Immunoassay. Anal Chem 92:2809–2814

    CAS  PubMed  Google Scholar 

  3. Lv S, Zhang K, Zhu L (2019) ZIF-8-Assisted NaYF4:Yb,Tm@ZnO converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor. Anal Chem 92:1470–1476

    PubMed  Google Scholar 

  4. Feng J, Wang H, Ma Z (2020) Ultrasensitive amperometric immunosensor for the prostate specific antigen by exploiting a Fenton reaction induced by a metal-organic framework nanocomposite of type Au/Fe-MOF with peroxidase mimicking activity. Microchim Acta 187:95–102

    CAS  Google Scholar 

  5. Liu D, Huang X, Wang Z, Jin A, Sun X, Zhu L, Wang F, Ma Y, Niu G, Walker ARH, Chen X (2013) Gold nanoparticle-based activatable probe for sensing ultralow levels of prostate-specific antigen. ACS Nano 7:5568–5576

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun YL, Fan JF, Cui LY, Ke W, Zheng FJ, Zhao Y (2019) Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen. Microchim Acta 186:152–161

    Google Scholar 

  7. Wu MS, Chen RN, Xiao Y, Lv ZX (2016) Novel “signal-on” electrochemiluminescence biosensor for the detection of PSA based on resonance energy transfer. Talanta 161:271–277

    CAS  PubMed  Google Scholar 

  8. Ma H, Li X, Yan T, Li Y, Zhang Y, Wu D, Du B (2016) Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework. Biosens Bioelectron 79:379–385

    CAS  PubMed  Google Scholar 

  9. Qu FL, Li T, Yang MH (2011) Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens Bioelectron 26:3927–3931

    CAS  PubMed  Google Scholar 

  10. Benvidi A, Banaei M, Tezerjani MD, Molahosseini H, Jahanbani S (2018) Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers. Microchim Acta 185:50–59

    Google Scholar 

  11. Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 184:3049–3067

    CAS  Google Scholar 

  12. Chen X, Zhou G, Song P, Wang J, Gao J, Lu J, Zuo X (2014) Ultrasensitive electrochemical detection of prostate-specific antigen by using antibodies anchored on a DNA nanostructural scaffold. Anal Chem 86:7337–7342

    CAS  PubMed  Google Scholar 

  13. Zhang LJ, Luo ZB, Zeng RJ, Zhou Q, Tang DP (2019) All-solid-state metal-mediated Z-scheme photoelectrochemical immunoassay with enhanced photoexcited charge-separation for monitoring of prostate-specific antigen. Biosens Bioelectron 134:1–7

    PubMed  Google Scholar 

  14. Yin H, Wu H, Chen Y (2019) Photoelectrochemical determination of the activity of histone acetyltransferase and inhibitor screening by using MoS2 nanosheets. Microchim Acta 186:663–671

    Google Scholar 

  15. Shu J, Qiu Z, Zhou Q, Lin Y, Lu M, Tang D (2016) Enzymatic oxydate-triggered self-illuminated photoelectrochemical sensing platform for portable immunoassay using digital multimeter. Anal Chem 88:2958–2966

    CAS  PubMed  Google Scholar 

  16. Shu J, Tang DP (2019) Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. Anal Chem 92:363–377

    PubMed  Google Scholar 

  17. Shu J, Tang DP (2017) Current advances in quantum-dots-based photoelectrochemical immunoassays. Chem Asian J 12:2780–2789

    CAS  PubMed  Google Scholar 

  18. Zhao WW, Xu JJ, Chen HY (2016) Photoelectrochemical aptasensing. TrAC Trends in Anal Chem 82:307–315

    CAS  Google Scholar 

  19. Fu JY, An XS, Yao Y, Guo YM, Sun X (2019) Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sensors Actuators B Chem 287:503–509

    CAS  Google Scholar 

  20. Fu JY, Dong HW, Zhao QX, Guo YM, Sun X (2020) Fabrication of refreshable aptasensor based on hydrophobic screen-printed carbon electrode interface. Sci Total Environ 712:136410–136417

    CAS  PubMed  Google Scholar 

  21. Yu L, Liu TG, Liu K, Jiang JF, Wang T (2016) A method for separation of overlapping absorption lines in intracavity gas detection. Sensors Actuators B Chem 228:10–15

    CAS  Google Scholar 

  22. Lv SZ, Zhang KY, Zeng YY, Tang DP (2018) Double photosystems-based ‘Z-Scheme’ photoelectrochemical sensing mode for ultrasensitive detection of disease biomarker accompanying three-dimensional DNA walker. Anal Chem 90:7086–7093

    CAS  PubMed  Google Scholar 

  23. Dai WX, Zhang L, Zhao WW, Yu XD, Xu JJ, Chen HY (2017) Hybrid PbS quantum dot/nanoporous NiO film nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical biosensor. Anal Chem 89:8070–8078

    CAS  PubMed  Google Scholar 

  24. Peng B, Tang L, Zeng GM, Fang SY, Ouyang XL, Long BQ, Zhou YY, Deng YC, Liu YN, Wang JJ (2018) Self-powered photoelectrochemical aptasensor based on phosphorus doped porous ultrathin g-C3N4 nanosheets enhanced by surface plasmon resonance effect. Biosens Bioelectron 121:19–26

    CAS  PubMed  Google Scholar 

  25. Yu SY, Gao Y, Chen FZ (2019) Fast electrochemical deposition of CuO/Cu2O heterojunction photoelectrode: preparation and application for rapid cathodic photoelectrochemical detection of l-cysteine. Sensors Actuators B Chem 290:312–317

    CAS  Google Scholar 

  26. Kaya M, Volkan M (2012) New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid. Anal Chem 84:7729–7735

    CAS  PubMed  Google Scholar 

  27. Tayebi M, Kolaei M, Tayyebi A (2019) Reduced graphene oxide (RGO) on TiO2 for an improved photoelectrochemical (PEC) and photocatalytic activity. Sol Energy 190:185–194

    CAS  Google Scholar 

  28. Song Z, Fan GC, Li Z (2018) Universal design of selectivity-enhanced photoelectrochemical enzyme sensor: integrating photoanode with biocathode. Anal Chem 90:10681–10687

    CAS  PubMed  Google Scholar 

  29. Wang GL, Shu JX, Dong YM (2015) Using G-quadruplex/hemin to “switch-on” the cathodic photocurrent of p-type PbS quantum dots: toward a versatile platform for photoelectrochemical aptasensing. Anal Chem 87:2892–2900

    CAS  PubMed  Google Scholar 

  30. Xu YT, Yu SY, Zhu YC, Fan GC, Han DM, Qu P, Zhao WW (2019) Cathodic photoelectrochemical bioanalysis. TrAC Trends Anal Chem 114:81–88

    CAS  Google Scholar 

  31. Wang P, Tang Y, Wen X (2015) Enhanced visible light-induced charge separation and charge transport in Cu2O-based photocathodes by urea treatment. ACS Appl Mater Interfaces 7:19887–19893

    CAS  PubMed  Google Scholar 

  32. Nail BA, Fields JM, Zhao J (2015) Nickel oxide particles catalyze photochemical hydrogen evolution from water nanoscaling promotes P-type character and minority carrier extraction. ACS Nano 9:5135–5142

    CAS  PubMed  Google Scholar 

  33. Li Z, Xin Y, Zhang Z (2015) New photocathodic platform with quasi-core/shell-structured TiO2@Cu2O for sensitive detection of H2O2 release from living cells. Anal Chem 87:10491–10497

    CAS  PubMed  Google Scholar 

  34. Su LC, Chen RC, Li YC (2010) Detection of prostate-specific antigen with a paired surface plasma wave biosensor. Anal Chem 82:3714–3718

    CAS  PubMed  Google Scholar 

  35. Yan K, Liu Y, Yang Y (2015) A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline. Anal Chem 87:12215–12220

    CAS  PubMed  Google Scholar 

  36. Zhao WW, Yu XD, Xu JJ (2016) Recent advances in the use of quantum dots for photoelectrochemical bioanalysis. Nanoscale 8:17407–17414

    CAS  PubMed  Google Scholar 

  37. Zhang L, Zhu YC, Liang YY (2018) Semiconducting CuO nanotubes: synthesis, characterization, and bifunctional photocathodic enzymatic bioanalysis. Anal Chem 90:5439–5444

    CAS  PubMed  Google Scholar 

  38. Zhang W, Wen X, Yang S (2003) Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv Mater 15:822–825

    CAS  Google Scholar 

  39. Ge L, Li H, Du X (2018) Facile one-pot synthesis of visible light-responsive BiPO4/nitrogen doped graphene hydrogel for fabricating label-free photoelectrochemical tetracycline aptasensor. Biosens Bioelectron 111:131–137

    CAS  PubMed  Google Scholar 

  40. Yang Y, Xu D, Wu Q (2016) Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci Rep 6:35158

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Meng HM, Liu H, Kuai H (2016) Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 45:2583–2602

    CAS  PubMed  Google Scholar 

  42. Ahmed HA, Azzazy HME (2013) Power-free chip enzyme immunoassay for detection of prostate specific antigen (PSA) in serum. Biosens Bioelectron 49:478–484

    Google Scholar 

  43. Ding LL, Ge JP, Zhou WQ, Gao JP, Zhang ZY, Xiong Y (2016) Nanogold-functionalized g-C3N4 nanohybrids for sensitive impedimetric immunoassay of prostate-specific antigen using enzymatic biocatalytic precipitation. Biosens Bioelectron 85:212–219

    CAS  PubMed  Google Scholar 

  44. Panikkanvalappil SR, El-Sayed MA (2014) Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen. J Phys Chem B 118:14085–14091

    CAS  PubMed  Google Scholar 

  45. Rong Z, Bai ZK, Li JN, Tang H, Shen TY, Wang Q, Wang CW, Xiao R, Wang SQ (2019) Dual-color magnetic-quantum dot nanobeads as versatile fluorescent probes in test strip for simultaneous point-of-care detection of free and complexed prostate-specifc antigen. Biosens Bioelectron 145:111719–111726

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21775089, 51862014, 21665010), the Outstanding Youth Foundation of Shandong Province (ZR2017JL010), the Key Research and Development Program of Jining City (2018ZDGH032), the Project of Shandong Province Higher Educational Science and Technology Program (J18KA101), and Taishan scholar of Shandong Province (tsqn201909106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Qin, Fengli Qu or Limin Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Kong, W., Qin, X. et al. Self-powered cathodic photoelectrochemical aptasensor based on in situ–synthesized CuO-Cu2O nanowire array for detecting prostate-specific antigen. Microchim Acta 187, 325 (2020). https://doi.org/10.1007/s00604-020-04277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04277-9

Keywords

Navigation