Skip to main content
Log in

Palladium embedded in SnO2 enhances the sensitivity of flame-made chemoresistive gas sensors

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Palladium is used commonly to enhance the performance of chemoresistive metal-oxide gas sensors. Typically, this enhancement is attributed to the presence of Pd clusters on the surface of their metal-oxide support (i.e. SnO2). Possible Pd incorporation or embedding into the support rarely has been considered. Here, SnO2 particles (15 - 21 nm in diameter measured by N2 adsorption) with different Pd contents (0 - 3 mol%) were prepared by flame spray pyrolysis (FSP). Leaching these particles with HNO3 and characterization by inductively coupled plasma - optical emission spectrometry (ICP-OES) indicated that only 36 - 60% of Pd have been removed (e.g., from the SnO2 surface). The rest was embedded within the SnO2 particles. Annealing prior to leaching decreased by ~30% that Pd surface content. Most interestingly, such SnO2 particles (with only embedded Pd) show higher sensor response to acetone, ethanol and CO at 350 °C compared to SnO2 particles containing both surface and embedded Pd (i.e. before leaching). As a result, such sensors can detect acetone with high (> 25) signal-to-noise ratio at levels down to 5 ppb at 50% relative humidity.

Flame-made SnO2 nanoparticles with embedded and surface Pd (triangles) exhibit lower sensor response to acetone, ethanol and CO than SnO2 from which the surface Pd had been removed by leaching (circles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108(2):705–725. https://doi.org/10.1021/cr068121q

    Article  CAS  PubMed  Google Scholar 

  2. Güntner AT, Abegg S, Königstein K, Gerber PA, Schmidt-Trucksäss A, Pratsinis SE (2019) Breath sensors for health monitoring. ACS Sens 4(2):268–280. https://doi.org/10.1021/acssensors.8b00937

    Article  CAS  PubMed  Google Scholar 

  3. Aziz A, Tiwale N, Hodge SA, Attwood SJ, Divitini G, Welland ME (2018) Core-shell electrospun polycrystalline ZnO nanofibers for ultra-sensitive NO2 gas sensing. ACS Appl Mater Interfaces 10(50):43817–43823. https://doi.org/10.1021/acsami.8b17149

    Article  CAS  PubMed  Google Scholar 

  4. Galstyan V, Bhandari MP, Sberveglieri V, Sberveglieri G, Comini E (2018) Metal oxide nanostructures in food applications: quality control and packaging. Chemosensors 6(2):ARTN 16. https://doi.org/10.3390/chemosensors6020016

    Article  CAS  Google Scholar 

  5. Güntner AT, Pineau NJ, Mochalski P, Wiesenhofer H, Agapiou A, Mayhew CA, Pratsinis SE (2018) Sniffing entrapped humans with sensor arrays. Anal Chem 90(8):4940–4945. https://doi.org/10.1021/acs.analchem.8b00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korotcenkov G, Brinzari V, Cho BK (2016) Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta 183(3):1033–1054. https://doi.org/10.1007/s00604-015-1741-z

    Article  CAS  Google Scholar 

  7. Güntner AT, Koren V, Chikkadi K, Righettoni M, Pratsinis SE (2016) E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens 1(5):528–535. https://doi.org/10.1021/acssensors.6b00008

    Article  CAS  Google Scholar 

  8. Yamazoe N, Kurokawa Y, Seiyama T (1983) Effects of additives on semiconductor gas sensors. Sensors Actuators 4(2):283–289. https://doi.org/10.1016/0250-6874(83)85034-3

    Article  CAS  Google Scholar 

  9. Maekawa T, Tamaki J, Miura N, Yamazoe N, Matsushima S (1992) Development of SnO2-based ethanol gas sensor. Sensors Actuators B Chem 9(1):63–69. https://doi.org/10.1016/0925-4005(92)80195-4

    Article  CAS  Google Scholar 

  10. Mädler L, Sahm T, Gurlo A, Grunwaldt JD, Barsan N, Weimar U, Pratsinis SE (2006) Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J Nanopart Res 8(6):783–796. https://doi.org/10.1007/s11051-005-9029-6

    Article  CAS  Google Scholar 

  11. Ma N, Suematsu K, Yuasa M, Shimanoe K (2015) Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere. ACS Appl Mater Interfaces 7(28):15618–15625. https://doi.org/10.1021/acsami.5b04380

    Article  CAS  PubMed  Google Scholar 

  12. Koziej D, Hübner M, Barsan N, Weimar U, Sikora M, Grunwaldt JD (2009) Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors. Phys Chem Chem Phys 11(38):8620–8625. https://doi.org/10.1039/b906829e

    Article  CAS  PubMed  Google Scholar 

  13. Kappler J, Barsan N, Weimar U, Dieguez A, Alay JL, Romano-Rodriguez A, Morante JR, Gopel W (1998) Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresenius J Anal Chem 361(2):110–114. https://doi.org/10.1007/s002160050844

    Article  CAS  Google Scholar 

  14. Matsushima S, Teraoka Y, Miura N, Yamazoe N (1988) Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors. Jpn J Appl Phys 1 27(10):1798–1802. https://doi.org/10.1143/Jjap.27.1798

    Article  CAS  Google Scholar 

  15. Tan RQ, Guo YQ, Zhao JH, Li Y, Xu TF, Song WJ (2011) Synthesis, characterization and gas-sensing properties of Pd-doped SnO2 nano particles. T Nonferr Metal Soc 21(7):1568–1573. https://doi.org/10.1016/S1003-6326(11)60898-4

    Article  CAS  Google Scholar 

  16. Cabot A, Arbiol J, Morante JR, Weimar U, Barsan N, Gopel W (2000) Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sensors Actuators B Chem 70(1-3):87–100. https://doi.org/10.1016/S0925-4005(00)00565-7

    Article  CAS  Google Scholar 

  17. Sahm T, Mädler L, Gurlo A, Barsan N, Pratsinis SE, Weimar U (2004) Flame spray synthesis of tin dioxide nanoparticles for gas sensing. Sensors Actuators B Chem 98(2-3):148–153. https://doi.org/10.1016/j.snb.2003.10.003

    Article  CAS  Google Scholar 

  18. Pineau NJ, Kompalla JF, Güntner AT, Pratsinis SE (2018) Orthogonal gas sensor arrays by chemoresistive material design. Microchim Acta 185(12):563. https://doi.org/10.1007/s00604-018-3104-z

    Article  CAS  Google Scholar 

  19. Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE (2012) Breath acetone monitoring by portable Si:WO3 gas sensors. Anal Chim Acta 738:69–75. https://doi.org/10.1016/j.aca.2012.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Güntner AT, Pineau NJ, Chie D, Krumeich F, Pratsinis SE (2016) Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. J Mater Chem B 4(32):5358–5366. https://doi.org/10.1039/C6TB01335J

    Article  CAS  Google Scholar 

  21. Blattmann CO, Güntner AT, Pratsinis SE (2017) In situ monitoring of the deposition of flame-made chemoresistive gas-sensing films. ACS Appl Mater Interfaces 9(28):23926–23933. https://doi.org/10.1021/acsami.7b04530

    Article  CAS  PubMed  Google Scholar 

  22. Liewhiran C, Tamaekong N, Wisitsoraat A, Tuantranont A, Phanichphant S (2013) Ultra-sensitive H2 sensors based on flame-spray-made Pd-loaded SnO2 sensing films. Sensors Actuators B Chem 176:893–905. https://doi.org/10.1016/j.snb.2012.10.087

    Article  CAS  Google Scholar 

  23. van Vegten N, Maciejewski M, Krumeich F, Baiker A (2009) Structural properties, redox behaviour and methane combustion activity of differently supported flame-made Pd catalysts. Appl Catal B Environ 93(1-2):38–49. https://doi.org/10.1016/j.apcatb.2009.09.010

    Article  CAS  Google Scholar 

  24. Fujiwara K, Pratsinis SE (2018) Single Pd atoms on TiO2 dominate photocatalytic NOx removal. Appl Catal B Environ 226:127–134. https://doi.org/10.1016/j.apcatb.2017.12.042

    Article  CAS  Google Scholar 

  25. Bubenhofer SB, Krumeich F, Fuhrer R, Athanassiou EK, Stark WJ, Grass RN (2011) From embedded to supported metal/oxide nanomaterials: thermal behavior and structural evolution at elevated temperatures. J Phys Chem C 115(4):1269–1276. https://doi.org/10.1021/jp106576k

    Article  CAS  Google Scholar 

  26. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(Sep1):751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  27. Powers JD, Glaeser AM (1998) Grain boundary migration in ceramics. Interface Sci 6(1-2):23–39. https://doi.org/10.1023/A:1008656302007

    Article  CAS  Google Scholar 

  28. Fujiwara K, Pratsinis SE (2017) Atomically dispersed Pd on nanostructured TiO2 for NO removal by solar light. AICHE J 63(1):139–146. https://doi.org/10.1002/aic.15495

    Article  CAS  Google Scholar 

  29. Pelleg J (2016) Diffusion in ceramics. Solid mechanics and its applications. Springer, Cham. https://doi.org/10.1007/978-3-319-18437-1

    Book  Google Scholar 

  30. Lerch W, Stolwijk NA (1998) Diffusion of gold in silicon during rapid thermal annealing: effectiveness of the surface as a sink for self-interstitials. J Appl Phys 83(3):1312–1320. https://doi.org/10.1063/1.366831

    Article  CAS  Google Scholar 

  31. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167. https://doi.org/10.1023/A:1014405811371

    Article  CAS  Google Scholar 

  32. Gardner JW (1989) A diffusion-reaction model of electrical-conduction in tin oxide gas sensors. Semicond Sci Technol 4(5):345–350. https://doi.org/10.1088/0268-1242/4/5/003

    Article  CAS  Google Scholar 

  33. Koziej D, Barsan N, Shimanoe K, Yamazoe N, Szuber J, Weimar U (2006) Spectroscopic insights into CO sensing of undoped and palladium doped tin dioxide sensors derived from hydrothermally treated tin oxide sol. Sensors Actuators B Chem 118(1-2):98–104. https://doi.org/10.1016/j.snb.2006.04.014

    Article  CAS  Google Scholar 

  34. Suematsu K, Shin Y, Hua ZQ, Yoshida K, Yuasa M, Kida T, Shimanoe K (2014) Nanoparticle cluster gas sensor: controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl Mater Interfaces 6(7):5319–5326. https://doi.org/10.1021/am500944a

    Article  CAS  PubMed  Google Scholar 

  35. Suematsu K, Watanabe K, Tou A, Sun YJ, Shimanoe K (2018) Ultraselective toluene-gas sensor: nanosized gold loaded on zinc oxide nanoparticles. Anal Chem 90(3):1959–1966. https://doi.org/10.1021/acs.analchem.7b04048

    Article  CAS  PubMed  Google Scholar 

  36. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301(5635):935–938. https://doi.org/10.1126/science.1085721

    Article  CAS  PubMed  Google Scholar 

  37. Degler D, de Carvalho HWP, Weimar U, Barsan N, Pham D, Mädler L, Grunwaldt JD (2015) Structure-function relationships of conventionally and flame made Pd-doped sensors studied by X-ray absorption spectroscopy and DC-resistance. Sensors Actuators B Chem 219:315–323. https://doi.org/10.1016/j.snb.2015.05.012

    Article  CAS  Google Scholar 

  38. Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K (2015) Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl Mater Interfaces 7(10):5863–5869. https://doi.org/10.1021/am509082w

    Article  CAS  PubMed  Google Scholar 

  39. Güntner AT, Sievi NA, Theodore SJ, Gulich T, Kohler M, Pratsinis SE (2017) Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles. Anal Chem 89(19):10578–10584. https://doi.org/10.1021/acs.analchem.7b02843

    Article  CAS  PubMed  Google Scholar 

  40. Kim NH, Choi SJ, Kim SJ, Cho HJ, Jang JS, Koo WT, Kim M, Kim ID (2016) Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by Rh2O3 nanoparticles. Sensors Actuators B Chem 224:185–192. https://doi.org/10.1016/j.snb.2015.10.021

    Article  CAS  Google Scholar 

  41. Schon S, Theodore SJ, Güntner AT (2018) Versatile breath sampler for online gas sensor analysis. Sensors Actuators B Chem 273:1780–1785. https://doi.org/10.1016/j.snb.2018.07.094

    Article  CAS  Google Scholar 

  42. Güntner AT, Abegg S, Wegner K, Pratsinis SE (2018) Zeolite membranes for highly selective formaldehyde sensors. Sensors Actuators B Chem 257:916–923. https://doi.org/10.1016/j.snb.2017.11.035

    Article  CAS  Google Scholar 

  43. van den Broek J, Güntner AT, Pratsinis SE (2018) Highly selective and rapid breath isoprene sensing enabled by activated alumina filter. ACS Sens 3(3):677–683. https://doi.org/10.1021/acssensors.7b00976

    Article  CAS  PubMed  Google Scholar 

  44. van den Broek J, Abegg S, Pratsinis SE, Güntner AT (2019) Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat Commun 10(1):4220. https://doi.org/10.1038/s41467-019-12223-4

Download references

Acknowledgments

This study was financially supported mainly by the ETH Zürich (Grant No. ETH-21 18-1) and partially by the Swiss National Science Foundation (R’EQUIP No. 177037 & 170729).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris E. Pratsinis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineau, N.J., Keller, S.D., Güntner, A.T. et al. Palladium embedded in SnO2 enhances the sensitivity of flame-made chemoresistive gas sensors. Microchim Acta 187, 96 (2020). https://doi.org/10.1007/s00604-019-4080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4080-7

Keywords

Navigation