Skip to main content
Log in

A study on the electro-reductive cycle of amino-functionalized graphene quantum dots immobilized on graphene oxide for amperometric determination of oxalic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Amino-functionalized graphene quantum dots (NH2-GQD) are described for the amperometric determination of oxalic acid. The NH2-GQD were synthesized via a hydrothermal method using hexamethylenetetramine as the source for nitrogen. The average particle size of the GQD is ∼30 nm, which is also supported by TEM. Electrochemical analysis of the NH2-GQD-GO composite on a glassy carbon electrode at pH 7.4 showed a faint reduction peak at −0.6 V vs. SCE, which was enhanced in the presence of oxalic acid. This variation in cathodic current density is an interesting deviation from the usually studied anodic current density for the electrochemical sensors. This is also supported by cyclic voltammetry and time-based amperometric measurements. The electrode has a linear response in the 0.5–2.0 mM and 2.0–55 mM oxalate concentration ranges and a 50 μM detection limit (at S/N = 3). The electrode was successfully applied to the determination of oxalate in spiked urine samples.

Schematic representation of the fabrication of amino-functionalized graphene quantum dots and graphene oxide composite coated on glassy carbon electrode for utilizing the electro-reduction peak in cyclic voltammetry at around −0.6 V for the quantitative determination of oxalic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699. https://doi.org/10.1039/C2CC00110A

    Article  CAS  Google Scholar 

  2. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738. https://doi.org/10.1002/adma.200902825

    Article  CAS  PubMed  Google Scholar 

  3. Yan X, Cui X, Li B, Li L-s (2010) Large, solution-Processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10(5):1869–1873. https://doi.org/10.1021/nl101060h

    Article  CAS  PubMed  Google Scholar 

  4. Benítez-Martínez S, Valcárcel M (2015) Graphene quantum dots in analytical science. TrAC Trends Anal Chem 72 (Supplement C:93–113. https://doi.org/10.1016/j.trac.2015.03.020

    Article  CAS  Google Scholar 

  5. Dong Y, Li G, Zhou N, Wang R, Chi Y, Chen G (2012) Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem 84(19):8378–8382. https://doi.org/10.1021/ac301945z

    Article  CAS  PubMed  Google Scholar 

  6. Zhao J, Chen G, Zhu L, Li G (2011) Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun 13(1):31–33. https://doi.org/10.1016/j.elecom.2010.11.005

    Article  CAS  Google Scholar 

  7. Xu H, Zhou S, Xiao L, Wang H, Li S, Yuan Q (2015) Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J Mater Chem C 3(2):291–297. https://doi.org/10.1039/C4TC01991A

    Article  CAS  Google Scholar 

  8. Liu X, Gao W, Zhou X, Ma Y (2014) Pristine graphene quantum dots for detection of copper ions. J Mater Res 29(13):1401–1407. https://doi.org/10.1557/jmr.2014.145

    Article  CAS  Google Scholar 

  9. Fan Z, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S (2014) Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70 (Supplement C:149–156. https://doi.org/10.1016/j.carbon.2013.12.085

    Article  CAS  Google Scholar 

  10. Cai F, Liu X, Liu S, Liu H, Huang Y (2014) A simple one-pot synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the detection of Cr(vi) in aqueous media. RSC Adv 4(94):52016–52022. https://doi.org/10.1039/C4RA09320H

    Article  CAS  Google Scholar 

  11. Huang H, Liao L, Xu X, Zou M, Liu F, Li N (2013) The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): a platform for metal ion sensing. Talanta 117(Supplement C):152–157. https://doi.org/10.1016/j.talanta.2013.08.055

    Article  CAS  PubMed  Google Scholar 

  12. Hallaj T, Amjadi M, Manzoori JL, Shokri R (2015) Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim Acta 182(3):789–796. https://doi.org/10.1007/s00604-014-1389-0

    Article  CAS  Google Scholar 

  13. Bai J-M, Zhang L, Liang R-P, Qiu J-D (2013) Graphene quantum dots combined with europium ions as Photoluminescent probes for phosphate sensing. Chem Eur J 19(12):3822–3826. https://doi.org/10.1002/chem.201204295

    Article  CAS  PubMed  Google Scholar 

  14. Roushani M, Abdi Z (2014) Novel electrochemical sensor based on graphene quantum dots/riboflavin nanocomposite for the detection of persulfate. Sensors Actuators B Chem 201 (Supplement C:503–510. https://doi.org/10.1016/j.snb.2014.05.054

    Article  CAS  Google Scholar 

  15. Sun R, Wang Y, Ni Y, Kokot S (2014) Graphene quantum dots and the resonance light scattering technique for trace analysis of phenol in different water samples. Talanta 125(Supplement C):341–346. https://doi.org/10.1016/j.talanta.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Zhang Z-Y, Liang R-P, Li Y-H, Qiu J-D (2014) Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal Chem 86(9):4423–4430. https://doi.org/10.1021/ac500289c

    Article  CAS  PubMed  Google Scholar 

  17. Liu J-J, Zhang X-L, Cong Z-X, Chen Z-T, Yang H-H, Chen G-N (2013) Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale 5(5):1810–1815. https://doi.org/10.1039/C3NR33794D

    Article  CAS  PubMed  Google Scholar 

  18. Koch GH, Strong FM (1969) Determination of oxalate in urine. Anal Biochem 27(1):162–171. https://doi.org/10.1016/0003-2697(69)90227-9

    Article  CAS  PubMed  Google Scholar 

  19. Tadi KK, Motghare RV (2013) Potentiometric selective recognition of oxalic acid based on molecularly imprinted polymer. Int J Electrochem Sci 8:3197–3211

    CAS  Google Scholar 

  20. Bergerman J, Elliot JS (1955) Method for direct colorimetric determination of oxalic acid. Anal Chem 27(6):1014–1015. https://doi.org/10.1021/ac60102a045

    Article  CAS  Google Scholar 

  21. Zarembski PM, Hodgkinson A (1965) The fluorimetric determination of oxalic acid in blood and other biological materials. Biochem J 96(3):717–721

    Article  CAS  Google Scholar 

  22. He Z, Gao H (1997) Simultaneous determination of oxalic and tartaric acid with Chemiluminescence detection. Analyst 122(11):1343–1346. https://doi.org/10.1039/A702953E

    Article  CAS  Google Scholar 

  23. Costello J, Hatch M, Bourke E (1976) An enzymic method for the spectrophotometric determination of oxalic acid. J Lab Clin Med 87(5):903–908. https://doi.org/10.5555/uri:pii:0022214376904662

    Article  CAS  PubMed  Google Scholar 

  24. Fry IDR, Starkey BJ (1991) The determination of oxalate in urine and plasma by high performance liquid chromatography. Ann Clin Biochem 28(6):581–587. https://doi.org/10.1177/000456329102800607

    Article  CAS  PubMed  Google Scholar 

  25. Pfeiffer K, Berg W, Bongartz D, Hesse A (1997) The direct determination of urinary oxalate by non-suppressed ion chromatography. https://doi.org/10.1515/cclm.1997.35.4.305

  26. Trevaskis M, Trenerry VC (1996) An investigation into the determination of oxalic acid in vegetables by capillary electrophoresis. Food Chem 57(2):323–330. https://doi.org/10.1016/0308-8146(95)00228-6

    Article  CAS  Google Scholar 

  27. Ma L, Zeng Q, Zhang M, Wang L, Cheng F (2016) Direct determination of oxalic acid by a bare platinum electrode contrasting a platinum nanoparticles-modified glassy carbon electrode. J Exp Nanosci 11(16):1242–1252. https://doi.org/10.1080/17458080.2016.1209586

    Article  CAS  Google Scholar 

  28. Wang X, Cheng Y, You Z, Sha H, Gong S, Liu J, Sun W (2015) Sensitive electrochemical determination of oxalic acid in spinach samples by a graphene-modified carbon ionic liquid electrode. Ionics 21(3):877–884. https://doi.org/10.1007/s11581-014-1233-x

    Article  CAS  Google Scholar 

  29. Liu Y, Huang J, Wang D, Hou H, You T (2010) Electrochemical determination of oxalic acid using palladium nanoparticle-loaded carbon nanofiber modified electrode. Anal Methods 2(7):855–859. https://doi.org/10.1039/C0AY00098A

    Article  CAS  Google Scholar 

  30. Kim W, Lee JS, Shin DH, Jang J (2018) Platinum nanoparticles immobilized on polypyrrole nanofibers for non-enzyme oxalic acid sensor. J Mater Chem B 6(8):1272–1278. https://doi.org/10.1039/C7TB00629B

    Article  CAS  Google Scholar 

  31. Pan F, Chen D, Zhuang X, Wu X, Luan F, Zhang S, Wei J, Xia S, Li X (2018) Fabrication of gold nanoparticles/l-cysteine functionalized graphene oxide nanocomposites and application for nitrite detection. J Alloys Compd 744:51–56. https://doi.org/10.1016/j.jallcom.2018.02.053

    Article  CAS  Google Scholar 

  32. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  33. Li B, Nan Y, Zhang P, Song X (2016) Structural characterization of individual graphene sheets formed by arc discharge and their growth mechanisms. RSC Adv 6(24):19797–19806. https://doi.org/10.1039/C5RA23990G

    Article  CAS  Google Scholar 

  34. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  35. Zhu X, Zuo X, Hu R, Xiao X, Liang Y, Nan J (2014) Hydrothermal synthesis of two photoluminescent nitrogen-doped graphene quantum dots emitted green and khaki luminescence. Mater Chem Phys 147(3):963–967. https://doi.org/10.1016/j.matchemphys.2014.06.043

    Article  CAS  Google Scholar 

  36. Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, Yang L, Wang H, Xiao Y, Rong J (2013) One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B 1(1):39–42. https://doi.org/10.1039/C2TB00189F

    Article  CAS  Google Scholar 

  37. Kim S, Shin DH, Kim CO, Kang SS, Joo SS, Choi S-H, Hwang SW, Sone C (2013) Size-dependence of Raman scattering from graphene quantum dots: interplay between shape and thickness. Appl Phys Lett 102(5):053108. https://doi.org/10.1063/1.4790641

    Article  CAS  Google Scholar 

  38. Yang J, Deng S, Lei J, Ju H, Gunasekaran S (2011) Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens Bioelectron 29(1):159–166. https://doi.org/10.1016/j.bios.2011.08.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr. Praveen Mishra is thankful for the financial and infrastructural support extended by the National Institute of Technology Karnataka, Surathkal, Mangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badekai Ramachandra Bhat.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Bhat, B.R. A study on the electro-reductive cycle of amino-functionalized graphene quantum dots immobilized on graphene oxide for amperometric determination of oxalic acid. Microchim Acta 186, 646 (2019). https://doi.org/10.1007/s00604-019-3745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3745-6

Keywords

Navigation