Skip to main content
Log in

A disposable electrochemical sensor based on electrospinning of molecularly imprinted nanohybrid films for highly sensitive determination of the organotin acaricide cyhexatin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nanofibrous polyporous membranes imprinted with cyhexatin (CYT) were formed via the ordered distribution of the imprints in electrospun nanofibers. The MIPs have a high mass transfer rate and enhanced adsorption capacity. In addition, a printed carbon electrode with enhanced sensitivity was developed via electrochemical fabrication of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs). The molecularly imprinted sensor exhibits excellent selectivity and sensitivity for CYT. The structure and morphology of the nanohybrid films were characterized by using scanning electron microscopy, atomic force microscopy and chronoamperometry. The sensing performances were evaluated by cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy by using hexacyanoferrate(IV) as an electrochemical probe. The electrode, best operated at a working potential of around 0.16 V (vs. Ag/AgCl), has a linear response in the 1–800 ng mL−1 CYT concentration range and a detection limit of 0.17 ng mL−1 (at S/N = 3). The sensor demonstrated satisfactory recoveries when applied to the determination of CYT in spiked pear samples.

Schematic presentation of the electrochemical sensor for detection of CYT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campillo N, Viñas P, Peñalver R, Cacho J, Hernándezcórdoba M (2012) Solid-phase microextraction followed by gas chromatography for the speciation of organotin compounds in honey and wine samples: a comparison of atomic emission and mass spectrometry detectors. J Food Compos Anal 25:66–73

    Article  CAS  Google Scholar 

  2. Anderson W, Thorpe S, Owen L, Anderson S, Crews H, Reynolds S (1998) The analysis of cyhexatin residues in apples, pears and kiwi fruit using inductively coupled plasma mass spectrometry as an initial screen for total tin, with confirmation by gas chromatography-mass spectrometry. Food Addit Contam 15:288–292

    Article  CAS  Google Scholar 

  3. Yang S, Tan J, Li F, Song H (1993) Teratogenesis of cyhexatin to rabbit. J Toxicol (Chinese journal) S1:155. https://doi.org/10.16421/j.cnki.1002-3127.1993.s1.101

  4. Yan Z (2010) Brazil banned cyhexatin. Agrochem Res Appl (Chinese Journal) 14:43

    Google Scholar 

  5. Oliveira R, Santelli R (2010) Occurrence and chemical speciation analysis of organotin compounds in the environment: a review. Talanta 82:9–24

    Article  Google Scholar 

  6. Ma Y, Gui W, Zhu G (2015) The analysis of azocyclotin and cyhexatin residues in fruits using ultrahigh-performance liquid chromatography-tandem mass spectrometry. Anal Methods 7:2108–2113. https://doi.org/10.1039/C4AY02624A

    Article  CAS  Google Scholar 

  7. Wang J, Zhao L, Cai F, Niu Z, Zhang J, Wang X (2007) Determination of azocylotin and cyhexatin residues in apple juice. Food Sci 28:446–448

    CAS  Google Scholar 

  8. Cai L, Shen W, Wang Z, Zhang R, Ding T, Yu K, Wang H, Zhang W, Gong Y (2017) Determination of three organotin pesticide residues in apples and cabbages by gas chromatography-electron impact/positive chemical ionization mass spectrometry. Se Pu 35:1177–1183

    CAS  PubMed  Google Scholar 

  9. Cui Z, Sun Y, Ge N, Zhang J, Liu Y, Li A, Cao Y (2014) Simultaneous determination of cyhexatin,triphenyltin and fenbutatin oxide residues in fruits and vegetables by Grignard derivatization and gas chromatography coupled to tandem mass spectrometry. Chin J Chromatogr 32:855–860

    Article  CAS  Google Scholar 

  10. Sta BJ, Rozing M, Hattum B, Cofino W, Brinkman U (1992) Normal-phase high-performance liquid chromatography with UV irradiation, morin complexation and fluorescence detection for the determination of organotin pesticides. J Chromatogr A 609:195–203

    Article  Google Scholar 

  11. Zhang C, She Y, Li T, Zhao F, Jin M, Guo Y, Zheng L, Wang S, Jin F, Shao H, Liu H, Wang J (2017) A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Anal Bioanal Chem 409:1–12

    Article  Google Scholar 

  12. Wei X, Yu M, Li C, Gong X, Qin F, Wang Z (2018) Magnetic nanoparticles coated with a molecularly imprinted polymer doped with manganese-doped ZnS quantum dots for the determination of 2,4,6-trichlorophenol. Microchim Acta 185:208

    Article  Google Scholar 

  13. Yao Z, Yang X, Liu X, Yang Y, Hu Y, Zhao Z (2018) Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode. Microchim Acta 185:70

    Article  Google Scholar 

  14. Whitcombe M, Kirsch N, Nicholls I (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 27:297–401

    Article  CAS  Google Scholar 

  15. Munawar A, Tahir M, Shaheen A, Lieberzeit P, Khan W, Bajwa S (2017) Investigating nanohybrid material based on 3D CNTs@cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J Hazard Mater 342:96–106

    Article  Google Scholar 

  16. Yao T, Gu X, Li T, Li J, Li J, Zhao Z, Wang J, Qin Y, She Y (2016) Enhancement of surface plasmon resonance signals using a MIP/GNPs/rGO nano-hybrid film for the rapid detection of ractopamine. Biosens Bioelectron 75:96–100. https://doi.org/10.1016/j.bios.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  17. Zhao F, Wang S, She Y, Zhang C, Zheng L, Jin M, Shao H, Jin F, Du X, Wang J (2017) Subcritical water extraction combined with molecular imprinting technology for sample preparation in the detection of triazine herbicides. J Chromatogr A 1515:17–22

    Article  CAS  Google Scholar 

  18. Tong Y, Li H, Guan H, Zhao J, Majeed S, Anjum S, Feng L, Xu G (2013) Electrochemical cholesterol sensor based on carbon nanotube@molecularly imprinted polymer modified ceramic carbon electrode. Biosens Bioelectron 47:553–558

    Article  CAS  Google Scholar 

  19. Liang Y, Chen Q, Ran Y, Qu L, Li J (2017) Molecularly imprinted electrochemical sensor for daidzein recognition and detection based on poly(sodium 4-styrenesulfonate) functionalized graphene. Sensors Actuators B Chem 251:542–550

    Article  CAS  Google Scholar 

  20. Mehrani Z, Ebrahimzadeh H, Aliakbar A, Asgharinezhad A (2018) A poly(4-nitroaniline)/poly(vinyl alcohol) electrospun nanofiber as an efficient nanosorbent for solid phase microextraction of diazinon and chlorpyrifos from water and juice samples. Microchim Acta 185:384

    Article  Google Scholar 

  21. Lyu Y, Wu Y, Wang T, Lee C, Chung M, Lo C (2018) Hydrothermal and plasma nitrided electrospun carbon nanofibers for amperometric sensing of hydrogen peroxide. Microchim Acta 185:371. https://doi.org/10.1007/s00604-018-2915-2

    Article  CAS  Google Scholar 

  22. Tokonami S, Shiigi H, Nagaoka T (2009) Review: micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal Chim Acta 641:7–13

    Article  CAS  Google Scholar 

  23. Wu Y, Zhang Y, Zhang M, Liu F, Wan Y, Huang Z, Ye L, Zhou Q, Shi Y, Lu B (2014) Selective and simultaneous determination of trace bisphenol a and tebuconazole in vegetable and juice samples by membrane-based molecularly imprinted solid-phase extraction and HPLC. Food Chem 164:527–535

    Article  CAS  Google Scholar 

  24. Keiichi Y, Lei Y, Johanna L, Chronakis I (2008) Selective molecular adsorption using electrospun nanofiber affinity membranes. Biosens Bioelectron 23:1208–1215

    Article  Google Scholar 

  25. Yang X, Li X, Zhang L, Gong J (2017) Electrospun template directed molecularly imprinted nanofibers incorporated with BiOI nanoflake arrays as photoactive electrode for photoelectrochemical detection of triphenyl phosphate. Biosens Bioelectron 92:61–67

    Article  CAS  Google Scholar 

  26. Kirbay F, Yalcinkaya E, Atik G, Evren G, Unal B, Demirkol D, Timur S (2018) Biofunctionalization of PAMAM-montmorillonite decorated poly (Ɛ-caprolactone)-chitosan electrospun nanofibers for cell adhesion and electrochemical cytosensing. Biosens Bioelectron 109:286–294

    Article  CAS  Google Scholar 

  27. Cao F, Dong Q, Li C, Chen J, Ma X, Huang Y, Song D, Ji C, Lei Y (2018) Electrochemical sensor for detecting pain reliever/fever reducer drug acetaminophen based on electrospun CeBiOx nanofibers modified screen-printed electrode. Sensors Actuators B Chem 256:143–150. https://doi.org/10.1016/j.snb.2017.09.204

    Article  CAS  Google Scholar 

  28. Paul K, Singh V, Vanjari S, Singh S (2017) One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125. Biosens Bioelectron 88:144–152

    Article  CAS  Google Scholar 

  29. Sablok K, Bhalla V, Sharma P, Kaushal R, Chaudhary S, Suri C (2013) Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene. J Hazard Mater 248-249:322–328

    Article  CAS  Google Scholar 

  30. Shionoiri N, Nogariya O, Tanaka M, Matsunaga T, Tanaka T (2015) Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment. J Hazard Mater 283:410–415

    Article  CAS  Google Scholar 

  31. Tripathy S, Vanjari S, Singh V, Swaminathan S, Singh S (2016) Electrospun manganese (III) oxide nanofiber based electrochemical DNA-nanobiosensor for zeptomolar detection of dengue consensus primer. Biosens Bioelectron 90:378

    Article  Google Scholar 

  32. Betatache A, Braiek M, Chateaux J, Lagarde F, Jaffrezic-Renault N (2013) Molecular imprinted poly(ethyleneco-vinyl alcohol) nanofibers electrospun on gold electrodes for impedimetric creatinine sensing. Key Eng Mater 543:84–88

    Article  Google Scholar 

  33. Zhai Y, Wang D, Liu H, Zeng Y, Yin Z, Li L (2015) Electrochemical molecular imprinted sensors based on electrospun nanofiber and determination of ascorbic acid. Anal Sci 31:793–798

    Article  CAS  Google Scholar 

  34. Ma M, Zhu P, Pi F, Ji J, Sun X (2016) A disposable molecularly imprinted electrochemical sensor based on screen-printed electrode modified with ordered mesoporous carbon and gold nanoparticles for determination of ractopamine. J Electroanal Chem 775:171–178

    Article  CAS  Google Scholar 

  35. Ping J, Wang Y, Fan K, Wu J, Ying Y (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens Bioelectron 28:204–209

    Article  CAS  Google Scholar 

  36. Shao Y, Wang J, Wu H, Liu J, Aksay I, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal 22:1027–1036

    Article  CAS  Google Scholar 

  37. Li T (2016) Preparation and application of novel molecularly imprinted materials for detection of chemical contaminants. Unpublished PhD dissertation, Chinese Academy of Agricultural Sciences

  38. Zhao F, She Y, Chao Z, Wang S, Du X, Jin F, Jin M, Hua S, Zheng L, Wang J (2017) Selective determination of chloramphenicol in milk samples by the solid-phase extraction based on dummy molecularly imprinted polymer. Food Anal Methods 10:1–10

    Article  Google Scholar 

  39. Somasundrum M, Kirtikara K, Tanticharoen M (1996) Amperometric determination of hydrogen peroxide by direct and catalytic reduction at a copper electrode. Anal Chim Acta 319:59–70

    Article  CAS  Google Scholar 

  40. Kannan B, Williams D, Laslau C, Travas-Sejdic J (2012) A highly sensitive, label-free gene sensor based on a single conducting polymer nanowire. Biosens Bioelectron 35:258–264

    Article  CAS  Google Scholar 

  41. Sapountzi E, Braiek M, Vocanson F, Chateaux J, Jaffrezic-Renault N, Lagarde F (2017) Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sensors Actuators B Chem 238:392–401

    Article  CAS  Google Scholar 

  42. Wang Y, Hsieh Y (2010) Crosslinking of polyvinyl alcohol (PVA) fibrous membranes with glutaraldehyde and PEG diacylchloride. J Appl Polym Sci 116:3249–3255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding from the National Natural Science Foundation of China (Contact No31471654, 31772071), and China Agriculture Research System (NoCARS-05-05A-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongxin She or Jing Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhao, F., He, Y. et al. A disposable electrochemical sensor based on electrospinning of molecularly imprinted nanohybrid films for highly sensitive determination of the organotin acaricide cyhexatin. Microchim Acta 186, 504 (2019). https://doi.org/10.1007/s00604-019-3631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3631-2

Keywords

Navigation