Skip to main content
Log in

Polyhedral oligomeric silsesquioxane grafted silica-based core-shell microspheres for reversed-phase high-performance liquid chromatography

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Polyhedral oligomeric silsesquioxane (POSS) was used to modify spherical silica to fabricate core-shell POSS@SiO2 microspheres. The material was characterized by Fourier transform infrared experiments, scanning electron microscopy, thermogravimetric analysis and elemental analysis. The material was also used as a stationary phase for HPLC separation. The POSS@SiO2 column exhibits a reverse-phase liquid chromatography (RPLC) retention mechanism. The column efficiency of alkylbenzenes reaches 67,200 plates·m−1. The POSS@SiO2 column was also utilized for separation of basic anilines and polycyclic aromatic hydrocarbons. Compared with the commercial C8 column, the POSS@SiO2 column exhibits enhanced separation selectivity. The column was also used for the separation of synthetic cytokinins 6-benzylaminopurine and 6-furfurylaminopurine in bean sprout after extraction. In addition, the methacrylate groups on the surface of the POSS@SiO2 microsphere were further functionalized so as to facilitate the fabrication of versatile stationary phases with various separation mechanisms.

Schematic presentation of the two-step fabrication of polyhedral oligomeric silsesquioxane grafted silica-based (POSS@SiO2) core-shell microspheres for use in HPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95(5):1409–1430

    Article  CAS  Google Scholar 

  2. Deng J, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AR (2002) Polyhedral oligomeric silsesquioxanes: a new class of amphiphiles at the air/water interface. J Am Chem Soc 124(51):15194–15195

    Article  CAS  Google Scholar 

  3. Constable GS, Lesser AJ, Coughlin EB (2004) Morphological and mechanical evaluation of hybrid organic-inorganic thermoset copolymers of dicyclopentadiene and mono- or tris(norbornenyl)-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 37(4):1276–1282

    Article  CAS  Google Scholar 

  4. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173

    Article  CAS  Google Scholar 

  5. Li P, Wang J, Pei F, Liu Q, Fang Y, Hu Q (2018) Thiol-rich polyhedral oligomeric silsesquioxane-modified magnetic nanoparticles for the highly efficient separation and preconcentration of Cd (II) and Pb (II) in food and water prior to ICP-OES determination. J Anal At Spectrom 33(11):1974–1980

    Article  CAS  Google Scholar 

  6. Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475

    Article  CAS  Google Scholar 

  7. Liu Y, Huang Y, Liu L (2007) Thermal stability of POSS/methylsilicone nanocomposites. Compos Sci Technol 67(13):2864–2876

    Article  CAS  Google Scholar 

  8. Tanaka K, Ishiguro F, Chujo Y (2010) POSS ionic liquid. J Am Chem Soc 132(55):17649–17651

    Article  CAS  Google Scholar 

  9. Wan P, Tang Y, Yu Z, Gu J, Kong J (2015) Advanced aromatic polymers with excellent antiatomic oxygen performance derived from molecular precursor strategy and copolymerization of polyhedral oligomeric silsesquioxane. ACS Appl Mater Interfaces 7(36):20144–20155

    Article  Google Scholar 

  10. D'Arienzo M, Redaelli M, Callone E, Conzatti L, Credico DB, Dirè S, Giannini L, Polizzi S, Schizzi I, Scotti R, Tadiello L, Morazzoni F (2017) Hybrid SiO2@POSS nanofiller: a promising reinforcing system for rubber nanocomposites. Mater Chem Front 1(7):1441–1452

    Article  CAS  Google Scholar 

  11. Wang S, Tan L, Zhang C, Hussain I, Tan B (2015) Novel POSS-based organic-inorganic hybrid porous materials by low cost strategies. J Mater Chem A 3(12):6542–6548

    Article  CAS  Google Scholar 

  12. Zhou H, Ye Q, Xu J (2017) Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater Chem Front 1:212–230

    Article  CAS  Google Scholar 

  13. Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22(5):1733–1746

    Article  CAS  Google Scholar 

  14. Liu H, Hsu CH, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang W, Yue Y, Cheng S (2014) Two-dimensional nanocrystals of molecular Janus particles. J Am Chem Soc 136(30):10691–10699

    Article  CAS  Google Scholar 

  15. Sangtrirutnugul P, Chaiprasert T, Hunsiri W, Jitjaroendee T, Songkhum P, Laohhasurayotin K, Osotchan T, Ervithayasuporn V (2017) Tunable porosity of cross-linked-polyhedral oligomeric silsesquioxane supports for palladium-catalyzed aerobic alcohol oxidation in water. ACS Appl Mater Interfaces 9(14):12812–12822

    Article  CAS  Google Scholar 

  16. Liu H, Liu H (2017) Selective dye adsorption and metal ion detection using multifunctional silsesquioxane-based tetraphenylethene-linked nanoporous polymers. J Mater Chem A 5(19):9156–9162

    Article  CAS  Google Scholar 

  17. Hong T, Yang X, Xu Y, Ji Y (2016) Recent advances in the preparation and application of monolithic capillary columns in separation science. Anal Chim Acta 931:1–24

    Article  CAS  Google Scholar 

  18. Qiao X, Chen R, Yan H, Shen S (2017) Polyhedral oligomeric silsesquioxane-based hybrid monolithic columns: recent advances in their preparation and their applications in capillary liquid chromatography. TrAC, Trends Anal Chem 97:50–64

    Article  CAS  Google Scholar 

  19. Zhang H, Ou J, Liu Z, Wang H, Wei Y, Zou H (2015) Preparation of hybrid monolithic columns via “one-pot” photoinitiated thiol-acrylate polymerization for retention-independent performance in capillary liquid chromatography. Anal Chem 87(17):8789–8797

    Article  CAS  Google Scholar 

  20. Zhang B, Lei X, Deng L, Li M, Yao S, Wu X (2018) Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds. Microchim Acta 185(7):318

    Article  Google Scholar 

  21. Su J, Yang L, Wang Q (2018) Dual polyhedral oligomeric silsesquioxanes polymerization approach to mutually-mediated separation mechanisms of hybrid monolithic stationary and mobile phases towards small molecules. J Chromatogr A 1533:136–142

    Article  CAS  Google Scholar 

  22. Song WF, Zhao QL, Zhou XJ, Zhang LS, Huang YP, Liu ZS (2019) A star-shaped molecularly imprinted polymer derived from polyhedral oligomeric silsesquioxanes with improved site accessibility and capacity for enantiomeric separation via capillary electrochromatography. Microchim Acta 186(1):22

    Article  Google Scholar 

  23. Hayes JD, Malik A (2000) Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography. Anal Chem 72(17):4090–4099

    Article  CAS  Google Scholar 

  24. Ou J, Zhang Z, Lin H, Dong J, Zou H (2013) Polyhedral oligomeric silsesquioxanes as functional monomer to prepare hybrid monolithic columns for capillary electrochromatography and capillary liquid chromatography. Anal Chim Acta 761:209–216

    Article  CAS  Google Scholar 

  25. Kip Ç, Demir C, Tuncel A (2017) One pot synthesis of carboxyl functionalized-polyhedral oligomeric siloxane based monolith via photoinitiated thiol-methacrylate polymerization for nano-hydrophilic interaction chromatography. J Chromatogr A 1502:14–23

    Article  CAS  Google Scholar 

  26. Liu Z, Ou J, Zou H (2016) Click polymerization for preparation of monolithic columns for liquid chromatography. TrAC, Trends Anal Chem 82:89–99

    Article  CAS  Google Scholar 

  27. Lin Z, Ou J, Zhang Z, Dong J, Zou H (2013) Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem Commun 49(3):231–233

    Article  CAS  Google Scholar 

  28. Ma J, Dai Q, Li X, Zhu X, Ma T, Qiao X, Shen S, Liu X (2017) Dipentaerythritol penta−/hexa-acrylate based-highly cross-linked hybrid monolithic column: preparation and its applications for ultrahigh efficiency separation of proteins. Anal Chim Acta 963:143–152

    Article  CAS  Google Scholar 

  29. Mallik AK, Qiu H, Oishi T, Kuwahara Y, Takafuji M, Ihara H (2015) Design of C18 organic phases with multiple embedded polar groups for ultraversatile applications with ultrahigh selectivity. Anal Chem 87(13):6614–6621

    Article  CAS  Google Scholar 

  30. Qiao L, Shi X, Xu G (2016) Recent advances in development and characterization of stationary phases for hydrophilic interaction chromatography. TrAC, Trends Anal Chem 81:23–33

    Article  CAS  Google Scholar 

  31. Qian K, Yang Z, Zhang F, Yang B, Dasgupta PK (2018) Low-bleed silica-based stationary phase for hydrophilic interaction liquid chromatography. Anal Chem 90(15):8750–8755

    Article  CAS  Google Scholar 

  32. Chester TL (2012) Recent developments in high-performance liquid chromatography stationary phases. Anal Chem 85(2):579–589

    Article  Google Scholar 

  33. Qiu H, Mallik AK, Takafuji M, Liu X, Jiang S, Ihara H (2012) A new imidazolium-embedded C18 stationary phase with enhanced performance in reversed-phase liquid chromatography. Anal Chim Acta 738:95–101

    Article  CAS  Google Scholar 

  34. Chu Z, Zhang L, Zhang W (2018) Preparation and evaluation of maltose modified polymer-silica composite based on cross-linked poly glycidyl methacrylate as high performance liquid chromatography stationary phase. Anal Chim Acta 1036:179–186

    Article  CAS  Google Scholar 

  35. Forajta MB, Markuszewski MJ, Kaliszan R (2018) Free silanols and ionic liquids as their suppressors in liquid chromatography. J Chromatogr A 1559:17–43

    Article  Google Scholar 

  36. Dong S, Huang G, Su M, Huang T (2015) Environmentally friendly method: development and application to carbon aerogel as sorbent for solid-phase extraction. ACS Appl Mater Interfaces 7(40):22256–22263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from National Natural Science Foundation of China (21675039) and Young Talent of Hebei Province are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Qiao.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, M., Li, X. et al. Polyhedral oligomeric silsesquioxane grafted silica-based core-shell microspheres for reversed-phase high-performance liquid chromatography. Microchim Acta 186, 331 (2019). https://doi.org/10.1007/s00604-019-3441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3441-6

Keywords

Navigation