Skip to main content
Log in

Functionalization of a carbon nanofiber with a tetrasulfonatophenyl ruthenium(II)porphine complex for real-time amperometric sensing of chlorpromazine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A carbon nanofiber functionalized with ruthenium(II)-tetrasulfonato phenyl porphine (CNF/Ru-TSPP) is shown to be viable sensor for amperometric determination of the antipsychotic drug chlorpromazine (CPZ). The hollow platelet structured Ru-TSPP combines with the hollow cylindrical tube-like structure of the CNF via π stacking interaction. The morphological and electro conductive properties of the electrode were characterized by spectrophotometric techniques. The CNF/Ru-TSPP modified electrode displays a large surface-to-volume ratio, good electron transport and good electrocatalytic activity. The amperometric sensor, typically operated at a potential 0.63 V (vs. Ag/AgCl) exhibits a linear response in the 0.6 nM to 1.1 mM CPZ concentration range, has a 0.2 nM detection limit, and a remarkably good electrochemical sensitivity (2.405 μA μM−1 cm−2). The sensor is selective, repeatable and reproducible. It was successfully applied to the determination of CPZ in spiked serum samples.

Schematic presentation of carbon nanofiber/ tetrasulfonatophenyl Ruthenium(II)porphine (CNF/Ru-TSPP) nanocomposite synthesis and application for the electrochemical determination of chlorpromazine (CPZ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Beitollahi H, Ivari S-G, Torkzadeh-Mahani M (2018) Application of antibody–nanogold–ionic liquid–carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Biosens Bioelectron 110:97–102

    Article  CAS  PubMed  Google Scholar 

  2. Unnikrishnan B, Hsu P-C, Chen S-M (2012) A multipurpose voltammetric sensor for the determination of chlorpromazine in presence of acetaminophen, uric acid, dopamine and ascorbic acid. Int J Electrochem Sci 7:11414–11425

    CAS  Google Scholar 

  3. Mokhtari A, Rezaei B (2011) Chemiluminescence determination of chlorpromazine and fluphenazine in pharmaceuticals and human serum using tris (1, 10-phenanthroline) ruthenium (II). Anal Meth 3(4):996–1002

    Article  CAS  Google Scholar 

  4. Mohammadi S-Z, Sarhadi A-H, Mosazadeh F (2018) Screen-printed electrode modified with magnetic Core-shell nanoparticles for detection of chlorpromazine. Anal Bioanal Chem Res 5(2):363–372

    CAS  Google Scholar 

  5. Parvin M-H (2011) Graphene paste electrode for detection of chlorpromazine. Electrochem Commun 13(4):366–369

    Article  CAS  Google Scholar 

  6. Dermiş S, Biryol İ (1989) Voltammetric determination of chlorpromazine hydrochloride. Analyst 114(4):525–526

    Article  PubMed  Google Scholar 

  7. Purushothama H-T, Nayaka Y-A, Vinay M-M, Manjunatha P, Yathisha R-O, Basavarajappa K-V (2018) Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorpromazine. J Sci: Adv Mater Devices 3(2):161–166

    Google Scholar 

  8. Petković B-B, Kuzmanović D, Dimitrijević T, Krstić M-P, Stanković D-M (2017) Novel strategy for electroanalytical detection of antipsychotic drugs chlorpromazine and thioridazine; possibilities for simultaneous determination. Int J Electrochem Sci 12:3709–3720

    Article  Google Scholar 

  9. Sanghavi B-J, Wolfbeis O-S, Hirsch T, Swami N-S (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  10. Parvin M-H, Golivand M-B, Najafi M, Shariaty S-M (2012) Carbon paste electrode modified with cobalt nanoparticles and its application to the electrocatalytic determination of chlorpromazine. J Electroanal Chem 683:31–36

    Article  CAS  Google Scholar 

  11. Zimova N, Němec I, Zima J (1986) Determination of chlorpromazine and thioridazine by differential pulse voltammetry in acetonitrile medium. Talanta 33(6):467–470

    Article  CAS  PubMed  Google Scholar 

  12. Charisiadis A, Stangel C, Nikolaou V, Roy M-S, Sharma G-DCA-G (2015) A supramolecular assembling of zinc porphyrin with a π-conjugated oligo (phenylenevinylene)(oPPV) molecular wire for dye sensitized solar cell. RSC Adv 5(107):88508–88519

    Article  CAS  Google Scholar 

  13. Sales M-G-F, Tomás J-F, Lavandeira S-R (2006) Flow injection potentiometric determination of chlorpromazine. J Pharm Biomed Anal 41(4):1280–1286

    Article  CAS  PubMed  Google Scholar 

  14. Magno L-N, Bezerra F-C, Freire L-E-S, Guerra R-A, Bakuzis A-F, Gonçalves P-J (2017) Use of spectroscopic techniques for evaluating the coupling of porphyrins on biocompatible nanoparticles. A potential system for photodynamics, theranostics, and nanodrug delivery applications. J Phys Chem A 121(9):1924–1931

    Article  CAS  PubMed  Google Scholar 

  15. Liao W-M, Zhang J-H, Hou Y-J, Wang H-P, Pan M (2016) Visible-light-driven CO2 photo-catalytic reduction of Ru (II) and Ir (III) coordination complexes. Inorg Chem Commun 73:80–89

    Article  CAS  Google Scholar 

  16. Rushi A, Datta K, Ghosh P, Mulchandani A, Shirsat M-D (2013) Iron tetraphenyl porphyrin functionalized single wall carbon nanotubes for the detection of benzene. Mat Lett 96:38–41

    Article  CAS  Google Scholar 

  17. Kim S-U, Lee K-H (2004) Carbon nanofiber composites for the electrodes of electrochemical capacitors. Chem Phys Lett 400(1–3):253–257

    Article  CAS  Google Scholar 

  18. Yang T, Du M, Zhu H, Zhang M, Zou M (2015) Immobilization of Pt nanoparticles in carbon nanofibers: bifunctional catalyst for hydrogen evolution and electrochemical sensor. Electrochim Acta 167:48–54

    Article  CAS  Google Scholar 

  19. Nigović B, Jurić S, Mornar A (2018) Electrochemical determination of nepafenac topically applied nonsteroidal anti-inflammatory drug using graphene nanoplatelets-carbon nanofibers modified glassy carbon electrode. J Electroanal Chem 817:30–35

    Article  Google Scholar 

  20. Kubendhiran S, Sakthinathan S, Chen S-M, Tamizhdurai P, Shanthi K, Chelladurai K (2017) Green reduction of reduced graphene oxide with nickel tetraphenyl porphyrin nanocomposite modified electrode for enhanced electrochemical determination of environmentally pollutant nitrobenzene. J Colloid Interface Sci 497:207–216

    Article  CAS  PubMed  Google Scholar 

  21. Lu Q, Zhang Y, Liu S (2015) Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation. J Mater Chem 3(16):8552–8558

    Article  CAS  Google Scholar 

  22. Kumar S, Rath T, Mahaling R-N, Das C-K (2007) Processing and characterization of carbon nanofiber/syndiotactic polystyrene composites in the absence and presence of liquid crystalline polymer. Compos Part A 38(5):1304–1317

    Article  Google Scholar 

  23. Peshoria S, Narula A-K (2018) Structural, morphological and electrochemical properties of a polypyrrole nanohybrid produced by template-assisted fabrication. J Mater Sci 53(5):3876–3888

    Article  CAS  Google Scholar 

  24. Sekhon S-S, Park J-S, Cho E, Yoon Y-G, Kim C-S, Lee W-Y (2009) Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobic ionic liquids. Macromolecules 42(6):2054–2062

    Article  CAS  Google Scholar 

  25. Aydin M (2013) DFT and Raman spectroscopy of porphyrin derivatives: Tetraphenylporphine (TPP). DFT Vib Spectrosc 68:141–152

    Article  CAS  Google Scholar 

  26. Zardi P, Gallo E, Solan G-A, Hudson A-J (2016) Resonance Raman spectroscopy as an in situ probe for monitoring catalytic events in a Ru–porphyrin mediated amination reaction. Analyst 141(10):3050–3058

    Article  CAS  PubMed  Google Scholar 

  27. Sakthivel R, Mutharani B, Chen S-M, Kubendhiran S, Chen T-W, Al-Hemaid F-M, Ali M-A, Elshikh M-S (2018) A simple and rapid electrochemical determination of L-tryptophan based on functionalized carbon black/poly-L-histidine nanocomposite. J Electrochem Soc 165(10):B422–B430

    Article  CAS  Google Scholar 

  28. Ensafi A-A, Taei M, Khayamian T, Maleh H-K, Hasanpour F (2010) Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J Solid State Electrochem 14:1415–1423

    Article  CAS  Google Scholar 

  29. Kumar J-V, Karthik R, Chen S-M, Kokulnathan T, Sakthinathan S, Muthuraj V, Chiu T-W, Chen T-W (2018) Highly selective electrochemical detection of antipsychotic drug chlorpromazine in drug and human urine samples based on peas-like strontium molybdate as an electrocatalyst. Inorg Chem Front 5(3):643–655

    Article  Google Scholar 

  30. Fotouhi L, Hashkavayi A-B, Heravi M-M (2013) Electrochemical behaviour and voltammetric determination of sulphadiazine using a multi-walled carbon nanotube composite film-glassy carbon electrode. J Exp Nanosci 8:947–956

    Article  CAS  Google Scholar 

  31. Ahmadzadeh S, Karimi F, Atar N, Sartori E-R, Mirzaei E-F, Afsharmanesh E (2017) Synthesis of CdO nanoparticles using direct chemical precipitation method: fabrication of novel voltammetric sensor for square wave voltammetry determination of chlorpromazine in pharmaceutical samples. Inorg Nano-Met 47(3):347–353

    Article  CAS  Google Scholar 

  32. Bouchta D, Izaoumen N, Zejli H, Kaoutit M-E, Temsamani K-R (2005) A novel electrochemical synthesis of poly-3-methylthiophene-γ-cyclodextrin film application for the analysis of chlorpromazine and some neurotransmitters. Biosens Bioelectron 20(11):2228–2235

    Article  CAS  PubMed  Google Scholar 

  33. Hajian A, Rafati A-A, Afraz A, Najafi M (2014) Electrosynthesis of polythiophene nanowires and their application for sensing of chlorpromazine. J Electrochem Soc 161(9):B196–B200

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Ministry of Science and Technology (MOST 107-2113-M- 027-005-MY3), Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.24 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, R., Kubendhiran, S. & Chen, SM. Functionalization of a carbon nanofiber with a tetrasulfonatophenyl ruthenium(II)porphine complex for real-time amperometric sensing of chlorpromazine. Microchim Acta 186, 285 (2019). https://doi.org/10.1007/s00604-019-3384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3384-y

Keywords

Navigation