Skip to main content
Log in

A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report on the synthesis of carboxy functionalized graphene oxide (fGO) decorated with magnetite (Fe3O4) nanoparticles. The resulting nanomaterial was used to prepare a composite with polyaniline (PANI) which was characterized by UV-vis, Fourier transform-infrared and Raman spectroscopies. Its surface morphologies were characterized by atomic force and scanning electron microscopies. A screen-printed carbon electrode was then modified with the nanocomposite to obtain an enzyme-free glucose sensor. The large surface of fGO and Fe3O4 along with the enhanced charge transfer capability of PANI warrant a pronounced electrochemical response (typically measured at 0.18 V versus Ag/AgCl) which is suppressed in the presence of glucose. This reduction of current by glucose was used to design a sensitive method for quantification of glucose. The response of the modified SPCE is linear in the 0.05 μM – 5 mM glucose concentration range, and the lower detection limit is 0.01 μM.

Schematic illustration of in-situ anchoring of Iron oxide on functionalized graphene oxide and synthesis of its polymeric nanocomposite for non-enzymatic detection of Glucose. The nanocomposite modified screen printed interface enabled monitoring of glucose at lower potential with higher precision. GO (graphene oxide), fGO (functionalized graphene oxide), PANI (polyaniline).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fu S, Fan G, Yang L, Li F (2015) Non-enzymatic glucose sensor based on au nanoparticles decorated ternary Ni-Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite. Electrochim Acta 152:146–154

    Article  CAS  Google Scholar 

  2. Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KGM, Zimmet PZ, Del Prato S, Ji L, Sadikot SM, Herman WH (2016) Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Surg Obes Relat Dis 12(6):1144–1162

    Article  Google Scholar 

  3. Rahim A, Rehman ZU, Mir S, Muhammad N, Rehman F, Nawaz MH, Yaqub M, Siddiqi SA, Chaudhry AA (2017) A non-enzymatic glucose sensor based on CuO-nanostructure modified carbon ceramic electrode. J Mol Liq 248:425–431

    Article  CAS  Google Scholar 

  4. Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196

    Article  CAS  Google Scholar 

  5. Wang H-C, Lee A-R (2015) Recent developments in blood glucose sensors. J Food Drug Anal 23(2):191–200

    Article  CAS  Google Scholar 

  6. Lupu A, Lisboa P, Valsesia A, Colpo P, Rossi F (2009) Hydrogen peroxide detection nanosensor array for biosensor development. Sensors Actuators B Chem 137(1):56–61

    Article  Google Scholar 

  7. Ahmad R, Tripathy N, Ahn M-S, Bhat KS, Mahmoudi T, Wang Y, Yoo J-Y, Kwon D-W, Yang H-Y, Hahn Y-B (2017) Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci Rep 7(1):5715

    Article  Google Scholar 

  8. Cao X, Wang N (2011) A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136(20):4241–4246

    Article  CAS  Google Scholar 

  9. Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L (2009) One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20(45):455602

    Article  Google Scholar 

  10. Morales-Narváez E, Baptista-Pires L, Zamora-Gálvez A, Merkoçi A (2017) Graphene-based biosensors: going simple. Adv Mater 29(7)

    Article  Google Scholar 

  11. Mohd Yazid SNA, Md Isa I, Abu Bakar S, Hashim N, Ab Ghani S (2014) A review of glucose biosensors based on graphene/metal oxide nanomaterials. Anal Lett 47(11):1821–1834

    Article  CAS  Google Scholar 

  12. Mei H, Sheng Q, Wu H, Zhang X, Wang S, Xia Q (2015) Nonenzymatic sensing of glucose at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support. Microchim Acta 182(15–16):2395–2401

    Article  CAS  Google Scholar 

  13. Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185(1):49

    Article  Google Scholar 

  14. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105

    Article  CAS  Google Scholar 

  15. Lim JH, Mirkin CA (2002) Electrostatically driven dip-pen nanolithography of conducting polymers. Adv Mater 14(20):1474–1477

    Article  CAS  Google Scholar 

  16. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl Mater Interfaces 2(3):821–828

    Article  CAS  Google Scholar 

  17. Liu Y, Deng R, Wang Z, Liu H (2012) Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material. J Mater Chem 22(27):13619–13624

    Article  CAS  Google Scholar 

  18. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  19. Kong L, Lu X, Zhang W (2008) Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. J Solid State Chem 181(3):628–636

    Article  CAS  Google Scholar 

  20. Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron 52:147–152

    Article  CAS  Google Scholar 

  21. Akhtar MA, Hayat A, Iqbal N, Marty JL, Nawaz MH (2017) Functionalized graphene oxide–polypyrrole–chitosan (fGO–PPy–CS) modified screen-printed electrodes for non-enzymatic hydrogen peroxide detection. J Nanopart Res 19(10):334

    Article  Google Scholar 

  22. Qian T, Zhou X, Yu C, Wu S, Shen J (2013) Highly dispersed carbon nanotube/polypyrrole core/shell composites with improved electrochemical capacitive performance. J Mater Chem A 1(48):15230–15234

    Article  CAS  Google Scholar 

  23. Chauhan N, Narang J, Rawal R, Pundir C (2011) A highly sensitive non-enzymatic ascorbate sensor based on copper nanoparticles bound to multi walled carbon nanotubes and polyaniline composite. Synth Met 161(21–22):2427–2433

    Article  CAS  Google Scholar 

  24. Hong AJ, Song EB, Yu HS, Allen MJ, Kim J, Fowler JD, Wassei JK, Park Y, Wang Y, Zou J (2011) Graphene flash memory. ACS Nano 5(10):7812–7817

    Article  CAS  Google Scholar 

  25. Gao C, Jin YZ, Kong H, Whitby RL, Acquah SF, Chen G, Qian H, Hartschuh A, Silva S, Henley S (2005) Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109(24):11925–11932

    Article  CAS  Google Scholar 

  26. Zhao Y, Song X, Song Q, Yin Z (2012) A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm 14(20):6710–6719

    Article  CAS  Google Scholar 

  27. Wang Z, Yuan J, Li M, Han D, Zhang Y, Shen Y, Niu L, Ivaska A (2007) Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite. J Electroanal Chem 599(1):121–126

    Article  CAS  Google Scholar 

  28. Ocaña C, Hayat A, Mishra RK, Vasilescu A, Del Valle M, Marty J-L (2015) Label free aptasensor for lysozyme detection: a comparison of the analytical performance of two aptamers. Bioelectrochemistry 105:72–77

    Article  Google Scholar 

  29. Chang G, Shu H, Ji K, Oyama M, Liu X, He Y (2014) Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Appl Surf Sci 288:524–529

    Article  CAS  Google Scholar 

  30. Zhang C, Ni H, Chen R, Zhan W, Zhang B, Lei R, Xiao T, Zha Y (2015) Enzyme-free glucose sensing based on Fe3O4 nanorod arrays. Microchim Acta 182(9–10):1811–1818

    Article  CAS  Google Scholar 

  31. Ahammad AS, Al Mamun A, Akter T, Mamun M, Faraezi S, Monira F (2016) Enzyme-free impedimetric glucose sensor based on gold nanoparticles/polyaniline composite film. J Solid State Electrochem 20(7):1933–1939

    Article  CAS  Google Scholar 

  32. Shahnavaz Z, Lorestani F, Meng WP, Alias Y (2015) Core-shell–CuFe 2 O 4/PPy nanocomposite enzyme-free sensor for detection of glucose. J Solid State Electrochem 19(4):1223–1233

    Article  CAS  Google Scholar 

  33. Zhang L, S-m Y, X-j L (2014) Amperometric nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite made from nickel (II) hydroxide nanoplates and carbon nanofibers. Microchim Acta 181(3–4):365–372

    Article  CAS  Google Scholar 

  34. Liu Z, Zhao B, Shi Y, Guo C, Yang H, Li Z (2010) Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta 81(4–5):1650–1654

    Article  CAS  Google Scholar 

  35. Whang D (2009) Amperometric glucose biosensor based on a Pt-dispersed hierarchically porous electrode. J Korean Phys Soc 54(4)

  36. Heidari H, Habibi E (2016) Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles. Microchim Acta 183(7):2259–2266

    Article  CAS  Google Scholar 

  37. Zhong A, Luo X, Chen L, Wei S, Liang Y, Li X (2015) Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchim Acta 182(5–6):1197–1204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. H. N thanks the Higher Education Commission of Pakistan for financial assistance under start-up research grant and national research program for universities (21-329/SRGP/R&D/HEC/2014 and 20-4993/R&D/HEC/14/614). R. B acknowledges the HEC supported studentship under NRPU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akhtar Hayat or Mian Hasnain Nawaz.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, R., Akhtar, M.A., Hayat, A. et al. A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose. Microchim Acta 186, 267 (2019). https://doi.org/10.1007/s00604-019-3364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3364-2

Keywords

Navigation