Skip to main content

Advertisement

Log in

Phosphorimetric determination of 4-nitrophenol using mesoporous molecular imprinting polymers containing manganese(II)-doped ZnS quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mesoporous molecularly imprinted polymers (MIPs) containing mangnanese-doped ZnS quantum dots (Mn-ZnS QDs) were prepared for specific recognition and detection of 4-nitrophenol (4-NP). The Mn-ZnS QDs display orange room-temperature phosphorescence with excitation/emission peaks at 295/590 nm and a decay time of 2.0 ms. In the presence of 4-NP, the orange phosphorescence is strongly reduced. Phosphorescence drops linearly in the 0.1–100 μM 4-NP concentration range, and the detection limit is 60 nM. The detection limit is far lower than the maximally allowed 4-NP concentrations in surface water and drinking water as specified by the U.S. Environmental Protection Agency. The intraday (n = 5) and interday (n = 6) spiked recovery rates were 96.0–104.5% and 97.9–107.9%, respectively, with relative standard deviations of 0.7–4.8% and 1.8–7.5% respectively. These MIPs integrated the characteristic features of phosphorimetry and molecular imprinting. Potential interference by competitive substances, background fluorescence or scattered light are widely reduced.

Schematic presentation of the synthesis of phosphorescent molecularly-imprinted polymers. A novel probe with manganese-doped ZnS quantum dots (Mn-ZnS QDs) and 3-aminopropyl-triethoxysilane (APTES) as functional monomers and tetraethoxysilane (TEOS) as crosslinking agent was prepared for selective phosphorescence detection of 4-nitrophenol (4-NP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang T, Lang Q, Yang D, Li L, Zeng L, Zheng C, Li T, Wei M, Liu A (2013) Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochim Acta 106:127–134

    Article  CAS  Google Scholar 

  2. Zhang J, Cui S, Ding Y, Yang X, Guo K, Zhao J-T (2018) Two-dimensional mesoporous ZnCo2O4 nanosheets as a novel electrocatalyst for detection of o-nitrophenol and p-nitrophenol. Biosens Bioelectron 112:177–185

    Article  CAS  Google Scholar 

  3. Li W, Zhang H, Chen S, Liu Y, Zhuang J, Lei B (2016) Synthesis of molecularly imprinted carbon dot grafted YVO4:Eu3+ for the ratiometric fluorescent determination of paranitrophenol. Biosens Bioelectron 86:706–713

    Article  CAS  Google Scholar 

  4. Bae S, Gim S, Kim H, Hanna K (2016) Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Appl Catal B Environ 182:541–549

    Article  CAS  Google Scholar 

  5. Gupta VK, Atar N, Yola ML, Üstündağ Z, Uzun L (2014) A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217

    Article  CAS  Google Scholar 

  6. Office of Water (1980) Ambient water quality criteria for Nitrophenols, environmental protection regulations and standards. United States Environ Prot Agency 440/5-80-063

  7. Zhang W, He X-W, Li W-Y, Zhang Y-K (2012) Thermo-sensitive imprinted polymer coating CdTe quantum dots for target protein specific recognition. Chem Commun 48:1757–1759

    Article  CAS  Google Scholar 

  8. Fischer J, Barek J, Wang J (2006) Separation and detection of Nitrophenols at capillary electrophoresis microchips with AMPEROMETRIC detection. Electroanalysis 18:195–199

    Article  CAS  Google Scholar 

  9. Liu X, Ji Y, Zhang Y, Zhang H, Liu M (2007) Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples. J Chromatogr A 1165:10–17

    Article  CAS  Google Scholar 

  10. Zhang W, He X-W, Chen Y, Li W-Y, Zhang Y-K (2011) Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens Bioelectron 26:2553–2558

    Article  CAS  Google Scholar 

  11. Luo S, Yan G, Sun X (2018) Molecular imprinting based on phosphorescent resonance energy transfer for malachite green detection in fishes and water. New J Chem 42:9510–9516

    Article  CAS  Google Scholar 

  12. Chen J, Zheng A, Gao Y, He C, Wu G, Chen Y, Kai X, Zhu C (2008) Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochim Acta Part A Mol Biomol Spectrosc 69:1044–1052

    Article  Google Scholar 

  13. Hasegawa U, Nomura SM, Kaul SC, Hirano T, Akiyoshi K (2005) Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem Biophys Res Commun 331:917–921

    Article  CAS  Google Scholar 

  14. Xiao N, Liu S, Mo S, Li N, Ju Y, Ling Y, Li N, Luo H (2018) Highly selective detection of p-nitrophenol using fluorescence assay based on boron, nitrogen co-doped carbon dots. Talanta 184:184–192

    Article  CAS  Google Scholar 

  15. Kuang R, Kuang X, Pan S, Zheng X, Duan J, Duan Y (2010) Synthesis of cysteamine-coated CdTe quantum dots for the detection of bisphenol A. Microchim Acta 169:109–115

    Article  CAS  Google Scholar 

  16. Traviesa-Alvarez JM, Sánchez-Barragán I, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2007) Room temperature phosphorescence optosensing of benzo[a]pyrene in water using halogenated molecularly imprinted polymers. Analyst 132:218–223

    Article  CAS  Google Scholar 

  17. Wu P, He Y, Wang H-F, Yan X-P (2010) Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Anal Chem 82:1427–1433

    Article  CAS  Google Scholar 

  18. Lv J, Miao Y, Yang J, Qin J, Li D, Yan G (2017) A DNA probe based on phosphorescent resonance energy transfer for detection of transgenic 35S promoter DNA. Biosens Bioelectron 91:560–565

    Article  CAS  Google Scholar 

  19. Gong Y, Fan Z (2015) Highly selective manganese-doped zinc sulfide quantum dots based label free phosphorescent sensor for phosphopeptides in presence of zirconium (IV). Biosens Bioelectron 66:533–538

    Article  CAS  Google Scholar 

  20. Diaz-Diestra D, Thapa B, Beltran-Huarac J, Weiner BR, Morell G (2017) L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosens Bioelectron 87:693–700

    Article  CAS  Google Scholar 

  21. Sancho R, Minguillón C (2009) The chromatographic separation of enantiomers through nanoscale design. Chem Soc Rev 38:797–805

    Article  CAS  Google Scholar 

  22. Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron 25:1166–1172

    Article  CAS  Google Scholar 

  23. Orozco J, Cortés A, Cheng G, Sattayasamitsathit S, Gao W, Feng X, Shen Y, Wang J (2013) Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J Am Chem Soc 135:5336–5339

    Article  CAS  Google Scholar 

  24. Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183:2197–2203

    Article  CAS  Google Scholar 

  25. Rezaei B, Rahmanian O (2011) Nanolayer treatment to realize suitable configuration for electrochemical allopurinol sensor based on molecular imprinting recognition sites on multiwall carbon nanotube surface. Sensors Actuators B Chem 160:99–104

    Article  CAS  Google Scholar 

  26. Ma J, Yuan L, Ding M, Wang S, Ren F, Zhang J, Du S, Li F, Zhou X (2011) The study of core–shell molecularly imprinted polymers of 17β-estradiol on the surface of silica nanoparticles. Biosens Bioelectron 26:2791–2795

    Article  CAS  Google Scholar 

  27. Qian L, Sun J, Hou C, Yang J, Li Y, Lei D, Yang M, Zhang S (2017) Immobilization of BSA on ionic liquid functionalized magnetic Fe3O4 nanoparticles for use in surface imprinting strategy. Talanta 168:174–182

    Article  CAS  Google Scholar 

  28. Xu L, Fang G, Pan M, Wang X, Wang S (2016) One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains. Biosens Bioelectron 77:950–956

    Article  CAS  Google Scholar 

  29. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  30. Geng S, Lin SM, Liu SG, Li NB, Luo HQ (2016) A new fluorescent sensor for detecting p-nitrophenol based on β-cyclodextrin-capped ZnO quantum dots. RSC Adv 6:86061–86067

    Article  CAS  Google Scholar 

  31. Zhang Z, Zhou J, Liu Y, Tang J, Tang W (2015) Cyclodextrin capped CdTe quantum dots as versatile fluorescence sensors for nitrophenol isomers. Nanoscale 7:19540–19546

    Article  CAS  Google Scholar 

  32. Qu F, Chen P, Zhu S, You J (2017) High selectivity of colorimetric detection of p-nitrophenol based on Ag nanoclusters. Spectrochim Acta Part A Mol Biomol Spectrosc 171:449–453

    Article  CAS  Google Scholar 

  33. Wang Y, Wang N, Ni X, Jiang Q, Wenming Y, Huang W, Xu W (2015) A core–shell CdTe quantum dots molecularly imprinted polymer for recognizing and detecting p-nitrophenol based on computer simulation. RSC Adv 5:73424–73433

    Article  CAS  Google Scholar 

  34. Zhang C, Govindaraju S, Giribabu K, Huh YS, Yun K (2017) AgNWs-PANI nanocomposite based electrochemical sensor for detection of 4-nitrophenol. Sensors Actuators B Chem 252:616–623

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 31700862), the Natural Science Foundation for Young Scientists of Shanxi Province (Grant 201601D021109) and the Graduate Science and Technology Innovation Project of Shanxi Normal University (2017SCX039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqin Yan.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.08 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Miao, Y., Guo, J. et al. Phosphorimetric determination of 4-nitrophenol using mesoporous molecular imprinting polymers containing manganese(II)-doped ZnS quantum dots. Microchim Acta 186, 249 (2019). https://doi.org/10.1007/s00604-019-3362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3362-4

Keywords

Navigation