Skip to main content
Log in

An optoelectronic tongue based on an array of gold and silver nanoparticles for analysis of natural, synthetic and biological antioxidants

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric array, which can discriminate 20 food antioxidants of natural, synthetic and biological groups, is described. It consists of gold and silver nanoparticles that were synthesized using six different reducing and/or capping agents. The function of the array relies on the interaction of the antioxidants with the nanoparticles which causes aggregation or morphological changes. This, in turn, causes a change in the sensors’ colors. The array produces a unique combination of colors for each antioxidant. The resulting colorations are determined by recording the absorbances of the arrays at wavelengths of 405, 450, 490 and 630 nm, or by capturing the images with a digital camera. The discriminatory ability of the array is investigated by principle component analysis and hierarchical cluster analysis. The method was applied to quantitative assay of gallic acid, caffeic acid, catechin, dopamine, citric acid, butylated hydroxytoluene and ascorbic acid. The respective limits of detection are 4.2, 13, 53, 6.9, 47, 3.5 and 43 nM, respectively. The simultaneous determination of 5 different antioxidants is achieved utilizing partial least square regression. The root mean square errors for prediction of the test set are 0.0650, 0.0782, 0.811, 0.0206 and 0.135 nM for gallic acid, catechin, butylated hydroxytoluene, dopamine, and ascorbic acid, respectively. This method demonstrates excellent potential for analysis of antioxidants in beverages such as tea and lemon juice.

Schematic of a method for the simultaneous determination of several antioxidants based on changes in the color of gold and silver nanoparticles. The antioxidants cause aggregation and/or morphological changes which can be detected by using both image analysis or by colorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hemmateenejad B, Karimi S, Javidnia K et al (2015) Classification and assessment of antioxidant activity and phenolic content of different varieties of date palm (Phoenix dactylifera) fruits from Iran. J Iran Chem Soc 12:1935–1943

    Article  CAS  Google Scholar 

  2. Szydłowska-czerniak A, Dianoczki C, Recseg K, Szłyk E (2008) Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 76:899–905. https://doi.org/10.1016/j.talanta.2008.04.055

    Article  CAS  PubMed  Google Scholar 

  3. Le Gal K, Ibrahim MX, Wiel C et al (2015) Antioxidants can increase melanoma metastasis in mice. Sci Transl Med 7:1–8

    Google Scholar 

  4. Segundo MA, Reis S, Lima LFC (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 3:1–19. https://doi.org/10.1016/j.aca.2008.02.047

    Article  CAS  Google Scholar 

  5. Tsao R, Deng Z (2004) Separation procedures for naturally occurring antioxidant phytochemicals. J Chromatogr B 812:85–99. https://doi.org/10.1016/j.jchromb.2004.09.028

    Article  CAS  Google Scholar 

  6. Gulcin I (2012) Antioxidant activity of food constituents : an overview. Arch Toxicol 86:345–391. https://doi.org/10.1007/s00204-011-0774-2

    Article  CAS  PubMed  Google Scholar 

  7. Vilela D, Castañeda R, González MC et al (2015) Fast and reliable determination of antioxidant capacity based on the formation of gold nanoparticles. Microchim Acta 182:105–111. https://doi.org/10.1007/s00604-014-1306-6

    Article  CAS  Google Scholar 

  8. Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Article  CAS  Google Scholar 

  9. Scampicchio M, Wang J, Blasco AJ et al (2006) Nanoparticle-based assays of antioxidant activity. Anal Chem 78:2060–2063

    Article  CAS  Google Scholar 

  10. Vilela D, González MC, Escarpa A (2014) Nanoparticles as analytical tools for in-vitro antioxidant- capacity assessment and beyond. Trends Anal Chem. https://doi.org/10.1016/j.trac.2014.07.017

    Article  CAS  Google Scholar 

  11. Hemmateenejad B, Shamsipur M, Khosousi T et al (2012) Antioxidant activity assay based on the inhibition of oxidation and photobleaching of L-cysteine-capped CdTe quantum dots. Analyst 137:4029–4036

    Article  CAS  Google Scholar 

  12. Hemmateenejad B, Shahrivar-Kevishahi A, Shakerizadeh-Shirazi F (2016) Reversible Photobleaching of gold nanoclusters: a mechanistic investigation. J Phys Chem C 120:28215–28223

    Article  CAS  Google Scholar 

  13. Della Pelle F, Vilela D, González MCMC et al (2015) Antioxidant capacity index based on gold nanoparticles formation. Application to extra virgin olive oil samples. Food Chem 178:70–75. https://doi.org/10.1016/j.foodchem.2015.01.045

    Article  CAS  PubMed  Google Scholar 

  14. Della Pelle F, González MC, Sergi M et al (2015) Gold nanoparticles-based extraction-free colorimetric assay in organic media: an optical index for determination of Total polyphenols in fat-rich samples. Anal Chem 87:6905–6911. https://doi.org/10.1021/acs.analchem.5b01489

    Article  CAS  PubMed  Google Scholar 

  15. Huang W, Deng Y, He Y et al (2017) Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens Bioelectron 91:89–94. https://doi.org/10.1016/j.bios.2016.12.028

    Article  CAS  PubMed  Google Scholar 

  16. Bordbar MM, Tashkhourian J, Hemmateenejad B (2018) Qualitative and quantitative analysis of toxic materials in adulterated fruit pickle samples by a colorimetric sensor array. Sensors Actuators B Chem 257. https://doi.org/10.1016/j.snb.2017.11.010

    Article  CAS  Google Scholar 

  17. Hemmateenejad B, Tashkhourian J, Bordbar MM, Mobaraki N (2017) Development of colorimetric sensor array for discrimination of herbal medicine. J Iran Chem Soc 14:595–604

    Article  CAS  Google Scholar 

  18. Askim JR, Li Z, LaGasse MK et al (2016) An optoelectronic nose for identification of explosives. Chem Sci 7:199–206. https://doi.org/10.1039/C5SC02632F

    Article  CAS  PubMed  Google Scholar 

  19. Carey JR, Suslick KS, Hulkower KI et al (2011) Rapid identification of bacteria with a disposable colorimetric sensing array. J Am Chem Soc 133:7571–7576

    Article  CAS  Google Scholar 

  20. Yuan Z, Du Y, Tseng Y et al (2015) Fluorescent gold Nanodots based sensor Array for proteins discrimination. Anal Chem 87:4253–4259. https://doi.org/10.1021/ac5045302

    Article  CAS  PubMed  Google Scholar 

  21. Lei C, Dai H, Fu Y et al (2016) Article a colorimetric sensor Array for thiols discrimination based on urease-metal ion pairs a colorimetric sensor Array for thiols discrimination based on urease-metal ion pairs. Anal Chem 88:8542–8547. https://doi.org/10.1021/acs.analchem.6b01493

    Article  CAS  PubMed  Google Scholar 

  22. Gutierrez L, Aubry C, Cornejo M, Croue JP (2015) Citrate-coated silver nanoparticles interactions with effluent organic matter: influence of capping agent and solution conditions. Langmuir 31:8865–8872. https://doi.org/10.1021/acs.langmuir.5b02067

    Article  CAS  PubMed  Google Scholar 

  23. Tanner EEL, Tschulik K, Tahany R et al (2015) Nanoparticle capping agent dynamics and Electron transfer: polymer-gated oxidation of silver nanoparticles. J Phys Chem C 119:18808–18815. https://doi.org/10.1021/acs.jpcc.5b05789

    Article  CAS  Google Scholar 

  24. Phan CM, Nguyen HM (2017) Role of capping agent in wet synthesis of nanoparticles. J Phys Chem A 121:3213–3219. https://doi.org/10.1021/acs.jpca.7b02186

    Article  CAS  PubMed  Google Scholar 

  25. Sapsford KE, Algar WR, Berti L et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074. https://doi.org/10.1021/cr300143v

    Article  CAS  PubMed  Google Scholar 

  26. Thanh NTK, LAWG (2010) Functionalisation of nanoparticles for biomedical applications. NanoToday. https://doi.org/10.1016/j.nantod.2010.05.003

    Article  CAS  Google Scholar 

  27. Park SH, Maruniak A, Kim J et al (2016) Disposable microfluidic sensor arrays for discrimination of antioxidants. Talanta 153:163–169. https://doi.org/10.1016/j.talanta.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  28. Huang W, Xie Z, Deng Y, He Y (2018) 3,3″,5,5″-Tetramethylbenzidine-based Quadruple-Channel visual colorimetric sensor Array for highly sensitive discrimination of serum antioxidants. Sensors Actuators B Chem 254:1057–1060. https://doi.org/10.1016/j.snb.2017.08.005

    Article  CAS  Google Scholar 

  29. Sharpe E, Bradley R, Frasco T et al (2014) Metal oxide based multisensor array and portable database for field analysis of antioxidants. Sensors Actuators B Chem 193:552–562. https://doi.org/10.1016/j.snb.2013.11.088

    Article  CAS  Google Scholar 

  30. Hemmateenejad B, Mobaraki N, Shakerizadeh-Shirazi F, Miri R (2010) Multivariate image analysis-thin layer chromatography (MIA-TLC) for simultaneous determination of co-eluting components. Analyst 135:1747–1758

    Article  CAS  Google Scholar 

  31. Anzenbacher P Jr, Lubal P, Bucek P et al (2010) A practical approach to optical cross-reactive sensor arrays. Chem Soc Rev 39:3954–3979. https://doi.org/10.1039/b926220m

    Article  CAS  PubMed  Google Scholar 

  32. Askim JR, Mahmoudi M, Suslick KS et al (2013) Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 42:8649. https://doi.org/10.1039/c3cs60179j

    Article  CAS  PubMed  Google Scholar 

  33. Saha K, Agasti SS, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  34. Brereton RG (2003) Chemometrics:data analysis for the Laboratory and Chemical Plant. John Wiley &Sons, Ltd

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the University of Shiraz.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bahram Hemmateenejad or Javad Tashkhourian.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 4.93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordbar, M.M., Hemmateenejad, B., Tashkhourian, J. et al. An optoelectronic tongue based on an array of gold and silver nanoparticles for analysis of natural, synthetic and biological antioxidants. Microchim Acta 185, 493 (2018). https://doi.org/10.1007/s00604-018-3021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-3021-1

Keywords

Navigation