Skip to main content
Log in

Polystyrenesulfonate-coated nanoparticles with low cytotoxicity for determination of copper(II) via the luminescence of Tb(III) complexes with new calix[4]arene derivatives

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe new ligands with two 1,3-diketone groups and two heteroaromatic (pyridyl or quinolyl) moieties embedded to the upper and lower rims of dibromo-substituted calix[4]arene scaffold. The ligands bind Tb(III) ions in alkaline DMF solutions to form 1:1 complexes. The strong Tb(III)-centered luminescence (with excitation/emission peaks at 330/545 nm) of the complexes results from efficient ligand-to-metal energy transfer. The complexes were incorporated into polystyrenesulfonate (PSS) colloids by diluting a DMF solution of the complex with aqueous solution of PSS. The luminescence of the colloids is quenched by copper(II), and this was used to develop a method for its fluorometric determination in nanomolar concentrations. The lower limit of detection is 0.88 nM. Quenching is a result of (a) ion exchange which converts the terbium complexes into their copper counterparts, and (b) energy transfer from Tb(III) to Cu(II) complexes. The low cytotoxicity of the colloidal nanoprobe conceivably makes it a promising tool for use in cellular imaging.

New calix[4]arene derivative provide efficient binding sites for Tb(III) and Cu(II) ions. The Tb(III) complexes were embedded to core-shell nanoparticles by solvent-mediated aggregation followed by polystryrenesulfonate deposition. The nanoparticles exhibit luminescence response on copper ions in nanomolar concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kong L, Chu X, Ling X et al (2016) Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Microchim Acta 183:2185–2195. https://doi.org/10.1007/s00604-016-1854-z

    Article  CAS  Google Scholar 

  2. Zhao C, Liu B, Bi X et al (2016) A novel flavonoid-based bioprobe for intracellular recognition of Cu2+and its complex with Cu2+for secondary sensing of pyrophosphate. Sensors Actuators B Chem 229:131–137. https://doi.org/10.1016/j.snb.2016.01.116

    Article  CAS  Google Scholar 

  3. Wang Y, Wang H, Zhao X et al (2017) A β-diketonate–europium(III) complex-based fluorescent probe for highly sensitive time-gated luminescence detection of copper and sulfide ions in living cells. New J Chem 41:5981–5987. https://doi.org/10.1039/C7NJ00802C

    Article  CAS  Google Scholar 

  4. Dong H, Liu Y, Wang D et al (2010) Preparation of europium-quantum dots and europium-fluorescein composite nanoparticles available for ratiometric luminescent detection of metal ions. Nanotechnology 21:395504. https://doi.org/10.1088/0957-4484/21/39/395504

    Article  CAS  PubMed  Google Scholar 

  5. Sarkar S, Chatti M, Adusumalli VNKB, Mahalingam V (2015) Highly selective and sensitive detection of cu 2+ ions using Ce(III)/ Tb(III)-doped SrF 2 Nanocrystals as fluorescent probe. ACS Appl Mater Interfaces 7:25702–25708. https://doi.org/10.1021/acsami.5b06730

    Article  CAS  PubMed  Google Scholar 

  6. Cano-Raya C, Ramos MDF, Vallvey LFC et al (2005) Fluorescence quenching of the europium tetracycline hydrogen peroxide complex by copper(II) and other metal ions. Appl Spectrosc 59:1209–1216

    Article  CAS  PubMed  Google Scholar 

  7. Zairov R, Mustafina A, Shamsutdinova N et al (2012) The effect of the core morphology of Eu(III)-doped nanoparticles on the ion exchange versus energy transfer between Eu(III) in the core and cu(II) ions at the interface. J Nanopart Res 14:1018. https://doi.org/10.1007/s11051-012-1018-y

    Article  CAS  Google Scholar 

  8. Wang Y, Zhang C, Chen X et al (2016) Ratiometric fluorescent paper sensor utilizing hybrid carbon dots–quantum dots for the visual determination of copper ions. Nanoscale 8:5977–5984. https://doi.org/10.1039/C6NR00430J

    Article  CAS  PubMed  Google Scholar 

  9. De La Rosa-Romo LM, Oropeza-Guzmán MT, Olivas-Sarabia A, Pina-Luis G (2016) Flavone functionalized magnetic nanoparticles: a new fluorescent sensor for Cu2+ions with nanomolar detection limit. Sensors Actuators B Chem 233:459–468. https://doi.org/10.1016/j.snb.2016.04.113

    Article  CAS  Google Scholar 

  10. Nimse SB, Kim T (2013) Biological applications of functionalized calixarenes. Chem Soc Rev 42:366–386. https://doi.org/10.1039/C2CS35233H

    Article  CAS  PubMed  Google Scholar 

  11. Harrowfield J (2013) Calixarenes and cations. Chem Commun 49:1578–1580. https://doi.org/10.1039/c3cc38667h

    Article  CAS  Google Scholar 

  12. Kumar R, Lee YO, Bhalla V et al (2014) Recent developments of thiacalixarene based molecular motifs. Chem Soc Rev 43:4824–4870. https://doi.org/10.1039/c4cs00068d

    Article  CAS  PubMed  Google Scholar 

  13. Podyachev SN, Gimazetdinova GS, Sudakova SN et al (2017) Influence of upper rim dibromo-substitution in bis-1,3-diketone calix[4]arenes on spectral properties of ligands and their lanthanide complexes. Tetrahedron 73:5397–5407. https://doi.org/10.1016/j.tet.2017.07.043

    Article  CAS  Google Scholar 

  14. Mustafina A, Zairov R, Gruner M et al (2011) Synthesis and photophysical properties of colloids fabricated by the layer-by-layer polyelectrolyte assembly onto Eu(III) complex as a core. Colloids Surf B: Biointerfaces 88:490–496. https://doi.org/10.1016/j.colsurfb.2011.07.039

    Article  CAS  PubMed  Google Scholar 

  15. Shamsutdinova NA, Podyachev SN, Sudakova SN et al (2014) A facile synthetic route to convert Tb(III) complexes of novel tetra-1,3-diketone calix[4]resorcinarene into hydrophilic luminescent colloids. New J Chem 38:4130–4140. https://doi.org/10.1039/c4nj00637b

    Article  CAS  Google Scholar 

  16. Zairov R, Mustafina A, Shamsutdinova N et al (2017) High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones. Sci Rep 7. https://doi.org/10.1038/srep40486

  17. Davydov N, Zairov R, Mustafina A et al (2013) Analytica Chimica Acta determination of fluoroquinolone antibiotics through the fluorescent response of Eu ( III ) based nanoparticles fabricated by layer-by-layer technique. Anal Chim Acta 784:65–71. https://doi.org/10.1016/j.aca.2013.04.054

    Article  CAS  PubMed  Google Scholar 

  18. Shamsutdinova N, Zairov R, Mustafina A et al (2015) Interfacial interactions of hard polyelectrolyte-stabilized luminescent colloids with substrates. Colloids Surf A Physicochem Eng Asp 482:231–240. https://doi.org/10.1016/j.colsurfa.2015.05.013

    Article  CAS  Google Scholar 

  19. Zairov R, Zhilkin M, Mustafina A et al (2015) Impact of polyelectrolyte coating in fluorescent response of Eu(III)-containing nanoparticles on small chelating anions including nucleotides. Surf Coat Technol 271:242–246. https://doi.org/10.1016/j.surfcoat.2014.11.076

    Article  CAS  Google Scholar 

  20. Casnati A, Fochi M, Minari P et al (1996) Upper-rim urea-derivatized calix[4]arenes as neutral receptors for monocarboxylate anions. Gazz Chim Ital 126:99–106

    CAS  Google Scholar 

  21. Zairov R, Shamsutdinova N, Podyachev S et al (2016) Structure impact in antenna effect of novel upper rim substituted tetra-1,3-diketone calix[4]arenes on Tb(III) green and Yb(III) NIR-luminescence. Tetrahedron 72:2447–2455. https://doi.org/10.1016/j.tet.2016.03.068

    Article  CAS  Google Scholar 

  22. Shamsutdinova N, Zairov R, Nizameev I et al (2018) Tuning magnetic relaxation properties of “hard cores” in core-shell colloids by modification of “soft shell”. Colloids Surf B: Biointerfaces 162:52–59. https://doi.org/10.1016/j.colsurfb.2017.10.070

    Article  CAS  PubMed  Google Scholar 

  23. Fu Z, Cui F (2016) Thiosemicarbazide chemical functionalized carbon dots as a fluorescent nanosensor for sensing cu 2+ and intracellular imaging. RSC Adv 6:63681–63688. https://doi.org/10.1039/C6RA10168B

    Article  CAS  Google Scholar 

  24. Rajaković LV, Marković DD, Rajaković-Ognjanović VN, Antanasijević DZ (2012) Review: the approaches for estimation of limit of detection for ICP-MS trace analysis of arsenic. Talanta 102:79–87. https://doi.org/10.1016/j.talanta.2012.08.016

    Article  CAS  PubMed  Google Scholar 

  25. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S. https://doi.org/10.1093/ajcn/67.5.952S

    Article  CAS  PubMed  Google Scholar 

  26. Paul A, Anbu S, Sharma G et al (2015) Intracellular detection of cu 2+ and S 2− ions through a quinazoline functionalized benzimidazole-based new fluorogenic differential chemosensor. Dalton Trans 44:16953–16964. https://doi.org/10.1039/C5DT02662H

    Article  CAS  PubMed  Google Scholar 

  27. Tian J, Liu Q, Asiri AM et al (2013) Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal Chem 85:5595–5599. https://doi.org/10.1021/ac400924j

    Article  CAS  PubMed  Google Scholar 

  28. Lee I, Kim S, Kim SN et al (2014) Highly fluorescent amidine/schiff base dual-modified polyacrylonitrile nanoparticles for selective and sensitive detection of copper ions in living cells. ACS Appl Mater Interfaces 6:17151–17156. https://doi.org/10.1021/am504824n

    Article  CAS  PubMed  Google Scholar 

  29. Yang X, Yang L, Dou Y, Zhu S (2013) Synthesis of highly fluorescent lysine-stabilized au nanoclusters for sensitive and selective detection of Cu2+ ion. J Mater Chem C 1:6748. https://doi.org/10.1039/c3tc31398k

    Article  CAS  Google Scholar 

  30. Fegade UA, Sahoo SK, Singh A et al (2015) A chemosensor showing discriminating fluorescent response for highly selective and nanomolar detection of Cu2+ and Zn2+ and its application in molecular logic gate. Anal Chim Acta 872:63–69. https://doi.org/10.1016/j.aca.2015.02.051

    Article  CAS  PubMed  Google Scholar 

  31. Wang F, Zhang C, Xue Q et al (2017) Label-free upconversion nanoparticles-based fluorescent probes for sequential sensing of Cu2+, pyrophosphate and alkaline phosphatase activity. Biosens Bioelectron 95:21–26. https://doi.org/10.1016/j.bios.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  32. Sarkar S, Chatti M, Mahalingam V (2014) Highly luminescent colloidal Eu3+−doped KZnF3 nanoparticles for the selective and sensitive detection of CuII ions. Chem. – Eur J 20:3311–3316. https://doi.org/10.1002/chem.201304697

    Article  CAS  PubMed  Google Scholar 

  33. Mukhametshina A, Petrov A, Fedorenko S et al (2018) Luminescent nanoparticles for rapid monitoring of endogenous acetylcholine release in mice atria. Luminescence 33:1–6. https://doi.org/10.1002/bio.3450

    Article  CAS  Google Scholar 

  34. Chen X, Lu Q, Liu D et al (2018) Highly sensitive and selective determination of copper(II) based on a dual catalytic effect and by using silicon nanoparticles as a fluorescent probe. Microchim Acta 185:1–7. https://doi.org/10.1007/s00604-018-2720-y

    Article  CAS  Google Scholar 

  35. Chao MR, Hu CW, Chen JL (2016) Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Microchim Acta 183:1323–1332. https://doi.org/10.1007/s00604-015-1693-3

    Article  CAS  Google Scholar 

  36. Zairov RR, Solovieva AO, Shamsutdinova NA, Podyachev SN, Shestopalov MA, Pozmogova TN, Miroshnichenko SM, Mustafina AR AK Polyelectrolyte-coated ultra-small nanoparticles with Tb(III)-centered luminescence as cell labels with unusual charge effect on their cell internalization. submitted

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustem R. Zairov.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3.79 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zairov, R.R., Nagimov, R.N., Sudakova, S.N. et al. Polystyrenesulfonate-coated nanoparticles with low cytotoxicity for determination of copper(II) via the luminescence of Tb(III) complexes with new calix[4]arene derivatives. Microchim Acta 185, 386 (2018). https://doi.org/10.1007/s00604-018-2923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2923-2

Keywords

Navigation