Skip to main content
Log in

Time-resolved determination of Fe(II) ions using cysteine-bridged Mn-doped ZnS quantum dots as a phosphorimetric probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A time-resolved phosphorescence (TRP) is applied to the highly sensitive determination of Fe(II) ions. The method is based on the use of a phosphorescent probe consisting of cysteine-bridged Mn-doped ZnS quantum dots (Mn/ZnS QDs). The presence of cysteine enhances the phosphorescence of the QDs and also increases the efficiency of quenching caused by Fe(II) ions. This results in strongly improved selectivity for Fe(II). The linear response is obtained in the concentration range of 50–1000 nM with a 19 nM detection limit. Phosphorescence is recorded at excitation/emission peaks of 301/602 nm. The interference of short-lived fluorescent and scattering background from the biological fluids is eliminated by using the TRP mode with a delay time of 200 μs. The determination of Fe(II) in human serum samples spiked at a 150 nM level gave a 92.4% recovery when using the TRP mode, but only 52.4% when using steady-state phosphorescence. This demonstrates that this probe along with TRP detection enables highly sensitive and accurate determination of Fe(II) in serum.

Schematic of a novel phosphorescent method for the detection of Fe2+ ions based on cysteine-bridged Mn-doped ZnS quantum dots. The sensitivity of this assay greatly increases due to the addition of cysteine. Interferences by short-lived auto-fluorescence and the scattering light from the biological fluids is eliminated by using time-resolved phosphorescence mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  2. Goss DJ, Theil EC (2011) Iron responsive mRNAs: a family of Fe2+ sensitive riboregulators. Acc Chem Res 44:1320–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moin ST, Hofer TS, Pribil AB, Randolf BR, Rode BM (2010) A quantum mechanical charge field molecular dynamics study of Fe2+ and Fe3+ ions in aqueous solutions. Inorg Chem 49:5101–5106

    Article  CAS  PubMed  Google Scholar 

  4. Fakih S, Podinovskaia M, Kong X, Collins HL, Schaible UE, Hider RC (2008) Targeting the lysosome: fluorescent iron(III) chelators to selectively monitor endosomal/lysosomal labile iron pools. J Med Chem 51:4539–4552

    Article  CAS  PubMed  Google Scholar 

  5. McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827

    Article  CAS  PubMed  Google Scholar 

  6. Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  CAS  PubMed  Google Scholar 

  7. Wu SP, Chen YP, Sung YM (2011) Colorimetric detection of Fe3+ ions using pyrophosphate functionalized gold nanoparticles. Analyst 136:1887–1891

    Article  CAS  PubMed  Google Scholar 

  8. Jin Q, Hu Y, Sun Y, Li Y, Huo J, Zhao X (2015) Room-temperature phosphorescence by Mn-doped ZnS quantum dots hybrid with Fenton system for the selective detection of Fe2+. RSC Adv 5:41555–41562

    Article  CAS  Google Scholar 

  9. Chen H, Ren J (2012) Selective detection of Fe2+ by combination of CePO4:Tb3+nanocrystal-H2O2 hybrid system with synchronous fluorescence scan technique. Analyst 137:1899–1903

  10. Huang YF, Lin YW, Chang HT (2007) Control of the surface charges of Au-Ag nanorods: selective detection of iron in the presence of poly(sodium 4-styrenesulfonate). Langmuir 23:12777–12781

    Article  CAS  PubMed  Google Scholar 

  11. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301–310

    Article  CAS  PubMed  Google Scholar 

  12. Wu P, Yan XP (2010) Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids. Biosens Bioelectron 26:485–490

    Article  CAS  PubMed  Google Scholar 

  13. Wu P, Li Y, Yan XP (2009) CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-fenton hybrid system for sensitive photoluminescent detection of Fe2+. Anal Chem 81:6252–6257

    Article  CAS  Google Scholar 

  14. CostaFernandez JM, Pereiro R, SanzMedel A (2006) The use of luminescent quantum dots for optical sensing. Trends Anal Chem 25:207–218

    Article  CAS  Google Scholar 

  15. He Y, Wang HF, Yan XP (2008) Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids. Anal Chem 80:3832–3837

    Article  CAS  PubMed  Google Scholar 

  16. Wu P, Yan XP (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42:5489–5521

    Article  CAS  PubMed  Google Scholar 

  17. Wang HF, Wu YY, Yan XP (2013) Room-temperature phosphorescent discrimination of catechol from resorcinol and hydroquinone based on sodium tripolyphosphate capped Mn-doped ZnS quantum dots. Anal Chem 85:1920–1925

    Article  CAS  PubMed  Google Scholar 

  18. Tu R, Liu B, Wang Z, Gao D, Wang F, Fang Q, Zhang Z (2008) Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal Chem 80:3458–3465

    Article  CAS  PubMed  Google Scholar 

  19. Zou WS, Sheng D, Ge X, Qiao JQ, Lian HZ (2011) Room-temperature phosphorescence chemosensor and rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots. Anal Chem 83:30–37

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Chen H, Lin Z, Lin JM (2010) Preparation of surface imprinting polyer capped Mn-doped ZnS quantum dots and thier application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem 82:7380–7386

  21. Jin Q, Li Y, Huo J, Zhao X (2016) The "off-on" phosphorescent switch of Mn-doped ZnS quantum dots for detection of glutathione in food, wine, and biological samples. Sensors Actuators B Chem 227:108–116

    Article  CAS  Google Scholar 

  22. Wang HF, Li Y, Wu YY, He Y, Yan XP (2010) Ascorbic acid induced enhancement of room temperature phosphorescence of sodium tripolyphosphate-capped Mn-doped ZnS quantum dots: mechanism and bioprobe applications. Chem Eur J 16:12988–12994

    Article  CAS  PubMed  Google Scholar 

  23. Wu P, He Y, Wang HF, Yan XP (2010) Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids. Anal Chem 82:1427–1433

    Article  CAS  PubMed  Google Scholar 

  24. He H, Li C, Tian Y, Wu P, Hou X (2016) Phosphorescent differential sensing of physiological phosphates with lanthanide ions-modified Mn-doped ZnCdS quantum dots. Anal Chem 88:5892–5897

    Article  CAS  PubMed  Google Scholar 

  25. He Y, Wang HF, Yan XP (2009) Self-assembly of Mn-doped ZnS quantum dots/octa(3-aminopropyl) octasilsequioxane octahydrochloride nanohybrids for optosensing DNA. Chem Eur J 15:5436–5440

    Article  CAS  PubMed  Google Scholar 

  26. Wu P, Miao LN, Wang HF, Shao XG, Yan XP (2011) A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew Chem Int Ed 50:8118–8121

    Article  CAS  Google Scholar 

  27. Zhang ZF, Miao YM, Zhang QD, Lian LW, Yan GQ (2015) Selective room temperature phosphorescence detection of heparin based on manganese-doped zinc sulfide quantum dots/polybrene self-assembled nanosensor. Biosens Bioelectron 68:556–562

    Article  CAS  PubMed  Google Scholar 

  28. Wu P, Zhao T, Zhang J, Wu L, Hou X (2014) Analyte-activable probe for protease based on cytochrome c-capped Mn: ZnS quantum dots. Anal Chem 86:10078–10083

    Article  CAS  PubMed  Google Scholar 

  29. Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T (2003) Synthesis of water-soluble ZnS: Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer. J Mater Chem 13:1853–1857

    Article  CAS  Google Scholar 

  30. Chen JL, Zhu CQ (2005) Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal Chim Acta 546:147–153

    Article  CAS  Google Scholar 

  31. Lu Y, Yan B, Liu JL (2014) Nanoscale metal-organic frameworks as highly sensitive luminescent sensors for Fe2+ in aqueous solution and living cells. Chem Commun 50:9969–9972

    Article  CAS  Google Scholar 

  32. Huang WT, Xie WY, Shi Y, Luo HQ, Li NB (2012) A simple and facile strategy based on Fenton-induced DNA cleavage for fluorescent turn-on detection of hydroxyl radicals and Fe2+. J Mater Chem 22:1477–1481

    Article  CAS  Google Scholar 

  33. Yang S, Jiang ZY, Chen ZZ, Tong LL, Lu J, Wang JH (2015) Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchim Acta 182:1911–1916

    Article  CAS  Google Scholar 

  34. Yang LN, Chen J, Huang T, Huang L, Sun ZH, Jiang Y, Yao T, Wei SQ (2017) Red-emitting Au7 nanoclusters with fluorescence sensitivity to Fe2+ Ions. J Mater Chem C 5:4448–4454

    Article  CAS  Google Scholar 

  35. Xiao SJ, Chu ZJ, Zuo J, Zhao XJ, Huang CZ, Zhang L (2017) Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe2+ sensing. J Nanopart Res 19:84–84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 21105066, No. 21775087), Beijing Natural Science Foundation (Grant No. 2162010), Scientific Research Project of Beijing Educational Committee (Grant No. KM201610028008), and Cross-Disciplinary Research Project of Capital Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueying Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, W., Lu, Y., Wang, F. et al. Time-resolved determination of Fe(II) ions using cysteine-bridged Mn-doped ZnS quantum dots as a phosphorimetric probe. Microchim Acta 185, 298 (2018). https://doi.org/10.1007/s00604-018-2813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2813-7

Keywords

Navigation