Skip to main content
Log in

Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) were electrodeposited on the surface of a glassy carbon electrode (GCE) and then treated with a mixture of a thiolated DNA sequence (p-63; with high affinity for bisphenol A) and free bisphenol A (BPÀ). Pyrrole was then electropolymerizaed on the surface of the GCE to entrap the BPA@p-63 complex. BPA is then extracted with acetic acid solution to obtain MIP cavities where the embedded DNA sequence acts as the binding site for BPA. Scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were employed to characterize the surface of the modified GCE. Under the optimum conditions, the assay has a dynamic range that covers the 0.5 fM to 5 pM BPA concentration range and an 80 aM detection limit. It was applied to the quantitation of BPA in (spiked) milk, milk powder and water samples and gave acceptable recoveries.

Schematic of the procedure for aptamer-based detection of BPA using unique features of the aptamer-based modified electrodes and MIP-based sensors. This assay has high sensitivity and good selectivity. It can presumably be transferred to other detection schemes for small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rosenfeld CS (2017) Neuroendocrine disruption in animal models due to exposure to bisphenol A analogues. Front Neuroendocrinol 47:123–133

    Article  CAS  PubMed  Google Scholar 

  2. Zhou W, Sun C, Zhou Y, Yang X, Yang W (2014) A facial electrochemical approach to determinate bisphenol A based on graphene-hypercrosslinked resin MN202 composite. Food Chem 158:81–87

    Article  CAS  PubMed  Google Scholar 

  3. Lin Y, Liu K, Liu C, Yin L, Kang Q, Li L, Li B (2014) Electrochemical sensing of bisphenol A based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite. Electrochim Acta 133:492–500

    Article  CAS  Google Scholar 

  4. Ma M, Tu X, Zhan G, Li C, Zhang S (2014) Electrochemical sensor for bisphenol A based on a nanoporous polymerized ionic liquid interface. Microchim Acta 181:565–570

    Article  CAS  Google Scholar 

  5. Hou C, Tang WX, Zhang C, Wang YF, Zhu NN (2014) A novel and sensitive electrochemical sensor for bisphenol A determination based on carbon black supporting ferroferric oxide nanoparticles. Electrochim Acta 144:324–331

    Article  CAS  Google Scholar 

  6. Hakova M, Chocholousova HL, Chvojka J, Solich P, Satinsky D (2018) An on-line coupling of nanofibrous extraction with column-switching high performance liquid chromatography – a case study on the determination of bisphenol A in environmental water samples. Talanta 178:141–146

    Article  CAS  PubMed  Google Scholar 

  7. Hu Y, Liu Z, Zhan H, Hu L, Cui L, Wang K (2017) A novel electrochemiluminescence sensor for bisphenol A determination based on graphene–palladium nanoparticles/polyvinyl alcohol hybrids. Anal Methods 9:3870–3875

    Article  CAS  Google Scholar 

  8. Nicolucci C, Errico S, Federico A, Dallio M, Loguercio C, Diano N (2017) Human exposure to Bisphenol A and liver health status: quantification of urinary and circulating levels by LC-MS/MS. J Pharm Biomed 140:105–112

    Article  CAS  Google Scholar 

  9. Spagnuolo ML, Marini F, Sarabia LA, Ortiz MC (2017) Migration test of Bisphenol A from polycarbonate cups using excitation-emission fluorescence data with parallel factor analysis. Talanta 167:367–378

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Wang Y, Zhu W, Wang J, Yue X, Liu W, Zhang D, Wang J (2017) Simultaneous colorimetric determination of bisphenol A and bisphenol S via a multi-level DNA circuit mediated by aptamers and gold nanoparticles. Microchim Acta 184:951–959

    Article  CAS  Google Scholar 

  11. Wang Q, Zhu L, Chen M, Ma X, Wang X, Xia J (2017) Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS. Chemosphere 169:709–715

    Article  CAS  PubMed  Google Scholar 

  12. Kim SG, Lee JS, Jun J, Shin DH, Jang J (2016) Ultrasensitive bisphenol a field-effect transistor sensor using an aptamer-modified multichannel carbon nanofiber transducer. ACS Appl Mater Interfaces 8:6602–6610

    Article  CAS  PubMed  Google Scholar 

  13. Zhou L, Wang J, Li D, Li Y (2014) An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem 162:34–40

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Y, Zhou C, Yan X, Yan Y, Wang Q (2015) Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum. Anal Chim Acta 883:81–89

    Article  CAS  PubMed  Google Scholar 

  15. Yu P, Yunqing L, Zhang X, Zhou J, Xiong X, Li X, Chen J (2016) A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosens Bioelectron 79:22–28

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Liu Y, Liu B (2016) A dual-signaling strategy for ultrasensitive detection of bisphenol A by aptamer-based electrochemical biosensor. J Electroanal Chem 781:265–271

    Article  CAS  Google Scholar 

  17. Peng C, Pan N, Xie Z, Liu L, Xiang J, Liu C (2016) Determination of bisphenol A by a gold nanoflower enhanced enzyme-linked immunosorbent assay. Anal Lett 49:1492–1501

    Article  CAS  Google Scholar 

  18. Qiao Y, Li J, Li H, Fang H, Fan D, Wang W (2016) A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Biosens Bioelectron 86:315–320

    Article  CAS  PubMed  Google Scholar 

  19. Yang F, Xu L, Zhu L, Zhang Y, Meng W, Liu R (2016) Competitive immunoassay for analysis of bisphenol A in children’s sera using a specific antibody. Environ Sci Pollut Res Int 23:10714–10721

    Article  CAS  PubMed  Google Scholar 

  20. Ensafi AA, Amini M, Rezaei B, Talebi M (2016) A novel diagnostic biosensor for distinguishing immunoglobulin mutated and unmutated types of chronic lymphocytic leukemia. Biosens Bioelectron 77:409–415

    Article  CAS  PubMed  Google Scholar 

  21. Heydari-Bafrooei E, Shamszadeh NS (2017) Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens Bioelectron 91:284–292

    Article  CAS  PubMed  Google Scholar 

  22. Huang Y, Li X, Zheng S (2016) A novel and label-free immunosensor for bisphenol A using rutin as the redox probe. Talanta 160:241–246

    Article  CAS  PubMed  Google Scholar 

  23. Baghayeri M, Amiri A, Alizadeh Z, Veisi H, Hasheminejad E (2018) Non-enzymatic voltammetric glucose sensor made of ternary NiO/Fe3O4-SH/para-amino hippuric acid nanocomposite. J Electroanal Chem 810:69–77

    Article  CAS  Google Scholar 

  24. Baghayeri M, Veisi H, Ghanei-Motlagh M (2017) Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sensors Actuators B 249:321–330

    Article  CAS  Google Scholar 

  25. Baghayeri M, Sedrpoushan A, Mohammadi A, Heidari M (2017) A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 23:1553–1562

    Article  CAS  Google Scholar 

  26. Baghayeri M (2017) Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: application to determination of droxidopa in presence of phenobarbital. Sensors Actuators B 240:255–263

    Article  CAS  Google Scholar 

  27. Tan F, Cong L, Li X, Zhao Q, Zhao H, Quan X, Chen J (2016) An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sensors Actuators B Chem 233:599–606

    Article  CAS  Google Scholar 

  28. Huang N, Liu ML, Li HT, Zhang YY, Yao SZ (2015) Synergetic signal amplification based on electrochemical reduced graphene oxide-ferrocene derivative hybrid and gold nanoparticles as an ultra-sensitive detection platform for bisphenol A. Anal Chim Acta 853:249–257

    Article  CAS  PubMed  Google Scholar 

  29. Zhu L, Cao Y, Cao G (2014) Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol A. Biosens Bioelectron 54:258–261

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Reisberg S, Serradji N, Anquetin G, Pham MC, Wu W, Dong CZ, Piro B (2014) Biosens Bioelectron 53:214–219

    Article  CAS  PubMed  Google Scholar 

  31. Ma Y, Liu J, Li H (2017) E-assay concept: detection of bisphenol A with a label-free electrochemical competitive immunoassay. Biosens Bioelectron 92:21–25

    Article  CAS  PubMed  Google Scholar 

  32. Shi R, Liang J, Zhao Z, Liu A, Tian Y (2017) An electrochemical bisphenol A sensor based on one step electrochemical reduction of cuprous oxide wrapped graphene oxide nanoparticles modified electrode. Talanta 169:37–43

    Article  CAS  PubMed  Google Scholar 

  33. Xu X, Zheng Q, Bai G, Sang L, Yao Y, Cao X, Liu S, Yao C (2017) Polydopamine induced in-situ growth of Au nanoparticles on reduced graphene oxide as an efficient biosensing platform for ultrasensitive detection of bisphenol A. Electrochim Acta 242:56–65

    Article  CAS  Google Scholar 

  34. Cui H, Wu J, Eda S, Chen J, Chen W, Zheng L (2015) Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelectrode array. Microchim Acta 182:2361–2367

    Article  CAS  Google Scholar 

  35. Dadkhah S, Ziaei E, Mehdinia A, Kayyal TB, Jabbari A (2016) A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A. Microchim Acta 183:1933–1941

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Research Council of Isfahan University of Technology (IUT), the Center of Excellence in Sensor and Green Chemistry and the Iranian Nanotechnology Initiative Council for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Ensafi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ensafi, A.A., Amini, M. & Rezaei, B. Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A. Microchim Acta 185, 265 (2018). https://doi.org/10.1007/s00604-018-2810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2810-x

Keywords

Navigation