Skip to main content
Log in

Immobilization of zirconium-glycerolate nanowires on magnetic nanoparticles for extraction of urinary ribonucleosides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors have immobilized nanowires made from zirconium glycerolate (ZrGly) on magnetite (Fe3O4) nanoparticles by applying a solvothermal growth process using metal-glycerolate as a precursor. The structure and the dissolution-recrystallization mechanism of the resulting Fe3O4@ZrGly composite were investigated by attenuated total reflection-FTIR, energy-dispersive X-ray analysis, thermogravimetric analysis and solid-state cross polarization/magic angle spinning 13C NMR spectroscopy. The interaction between the zirconium glycerolate in Fe3O4@ZrGly and cis-diols leads to efficient adsorption of riboncleosides which then can be quantified by HPLC with UV detection. The sorbent was successfully applied to the selective enrichment of adenosine, cytidine, uridine and guanosine from spiked human urine samples. The detection limit of the method is in the range from 1.7 to 19 ng·mL−1 of nucleosides in spiked human urine, with relative standard deviations of lower than 12.4% and recoveries ranging from 90.6 to 113%.

Fe3O4@ZrGly with high selectivity towards ribonucleosides was designed and applied for quantitation of urinary ribonucleosides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shao Y, Zhu B, Zheng R, Zhao X, Yin P, Lu X, Jiao B, Xu G, Yao Z (2015) Development of urinary pseudotargeted LC-MS-based metabolomics method and its application in hepatocellular carcinoma biomarker discovery. J Proteome Res 14(2):906–916

    Article  CAS  Google Scholar 

  2. Kobayashi Y (2014) High-performance lectin affinity chromatography. Methods Mol Biol 1200:69–77

    Article  CAS  Google Scholar 

  3. Boulton M, Jones A, Walker R (1971) Synthetic analogues of polynucleotides. VI. The synthesis of ribonucleoside dialdehyde derivatives of polyacrylic acid hydrazide and their interaction with polynucleotides. Biochim Biophys Acta 246(2):197–205. https://doi.org/10.1016/0005-2787(71)90128-6

    Article  CAS  Google Scholar 

  4. Dai Q, Ma J, Ma S, Wang S, Li L, Zhu X, Qiao X (2016) Cationic ionic liquids organic ligands based metal-organic frameworks for fabrication of core-shell microspheres for hydrophilic interaction liquid chromatography. ACS Appl Mater Interfaces 8(33):21632–21639

    Article  CAS  Google Scholar 

  5. Liu Y, Ren L, Liu Z (2011) A unique boronic acid functionalized monolithic capillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun (Camb) 47(17):5067–5069

    Article  CAS  Google Scholar 

  6. Cheng T, Zhang Y, Liu X, Zhang X, Zhang H (2017) A filter paper coated with phenylboronic acid-modified mesoporous silica for enrichment of intracellular nucleosides prior to their quantitation by HPLC. Microchim Acta 184(10):4007–4013

    Article  CAS  Google Scholar 

  7. Cheng T, Zhang Y, Liu X, Zhang X, Zhang H (2017) Surfactant assisted enrichment of nucleosides by using a sorbent consisting of magnetic polysulfone capsules and mesoporous silica nanoparticles modified with phenylboronic acid. Microchim Acta 184(1):271–278

    Article  CAS  Google Scholar 

  8. Jiang G, Zhu W, Shen X, Xu L, Li X, Wang R, Liu C, Zhou X (2017) Colorimetric and visual determination of adenosine triphosphate using a boronic acid as the recognition element, and based on the deaggregation of gold nanoparticles. Microchim Acta 184(11):4305–4312

    Article  CAS  Google Scholar 

  9. Li H, Zhu S, Cheng T, Wang S, Zhu B, Liu X, Zhang H (2016) Binary boronic acid-functionalized attapulgite with high adsorption capacity for selective capture of nucleosides at acidic pH values. Microchim Acta 183(5):1779–1786

    Article  CAS  Google Scholar 

  10. Sun X, Ma R, Chen J, Shi Y (2017) Boronate-affinity based magnetic molecularly imprinted nanoparticles for the efficient extraction of the model glycoprotein horseradish peroxidase. Microchim Acta 184(10):3729–3737

    Article  CAS  Google Scholar 

  11. Wang H, Feng W, Jia Q (2015) A graphene oxide functionalized with 3-aminophenylboronic acid for the selective enrichment of nucleosides, and their separation by capillary electrophoresis. Microchim Acta 182(1):185–192

    Article  CAS  Google Scholar 

  12. Chu J, Qi C, Huang Y, Jiang H, Hao Y, Yuan B, Feng Y (2015) Metal oxide-based selective enrichment combined with stable isotope labeling-mass spectrometry analysis for profiling of ribose conjugates. Anal Chem 87(14):7364–7372

    Article  CAS  Google Scholar 

  13. Ahmadi M, Elmongy H, Madrakian T, Abdel-Rehim M (2017) Nanomaterials as sorbents for sample preparation in bioanalysis: a review. Anal Chim Acta 958:1–21

    Article  CAS  Google Scholar 

  14. Jamshaid T, Neto E, Eissa M, Zine N, Kunita M, El-Salhi A, Elaissari A (2016) Magnetic particles: from preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. Trac-Trend Anal Chem 79:344–362

    Article  CAS  Google Scholar 

  15. Park S, Choi K, Lee S, Oh I, Park S, Park H (2017) CNT branching of three-dimensional steam-activated graphene hybrid frameworks for excellent rate and cyclic capabilities to store lithium ions. Carbon 116:500–509

    Article  CAS  Google Scholar 

  16. Qian X, Xu Q, Hang T, Shanmugam S, Li M (2017) Electrochemical deposition of Fe3O4 nanoparticles and flower-like hierarchical porous nanoflakes on 3D cu-cone arrays for rechargeable lithium battery anodes. Mater Design 121:321–334

    Article  CAS  Google Scholar 

  17. Bian X, Hong K, Ge X, Song R, Liu L, Xu M (2015) Functional hierarchical nanocomposites based on ZnO nanowire and magnetic nanoparticle as highly active recyclable photocatalysts. J Phys Chem C 119(4):1700–1705

    Article  CAS  Google Scholar 

  18. Yuan J, Schmalz H, Xu Y, Miyajima N, Drechsler M, Moeller M, Schacher F, Mueller A (2008) Room-temperature growth of uniform tellurium nanorods and the assembly of tellurium or Fe3O4 nanoparticles on the nanorods. Adv Mater 20(5):947–94+

    Article  CAS  Google Scholar 

  19. Ding J, Gao Q, Luo D, Shi Z, Feng Y (2010) N-Octadecylphosphonic acid grafted mesoporous magnetic nanoparticle: preparation, characterization, and application in magnetic solid-phase extraction. J Chromatogr A 1217(47):7351–7358

    Article  CAS  Google Scholar 

  20. Ren L, Liu Z, Dong M, Ye M, Zou H (2009) Synthesis and characterization of a new boronate affinity monolithic capillary for specific capture of cis-diol-containing compounds. J C hromatogr A 1216(23):4768

    Article  CAS  Google Scholar 

  21. Tian G, Chen Y, Zhou W, Pan K, Tian C, Huang X, Fu H (2011) 3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property. CrystEngComm 13(8):2994–3000

    Article  CAS  Google Scholar 

  22. Indran V, Syuhadazuhaimi N, Deraman M, Maniam G, Yusoff M, Yunhin TY, Ab. Rahim M (2014) An accelerated route of glycerol carbonate formation from glycerol using waste boiler ash as catalyst. RSC Adv 4 (48):25257

  23. Remias R, Kukovecz A, Daranyi M, Kozma G, Varga S, Konya Z, Kiricsi I (2009) Synthesis of zinc glycerolate microstacks from a ZnO nanorod sacrificial template. Eur J Inorg Chem 24:3622–3627

    Article  Google Scholar 

  24. Zhang J, Wang Y, He Y, Jiang T, Yang H, Tan X, Kang R, Yuan Y, Shi L (2010) Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Anal Biochem 397(2):212–217

    Article  CAS  Google Scholar 

  25. Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125(52):16176–16177

    Article  CAS  Google Scholar 

  26. Jiang X, Wang Y, Herricks T, Xia Y (2004) Ethylene glycol-mediated synthesis of metal oxide nanowires. J Mater Chem 14(4):695–703

    Article  CAS  Google Scholar 

  27. Lopes T, Ribeiro M, Ming C, Grimaldi R, Goncalves L, Marsaioli A (2016) Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance. Food Chem 212:641–647

    Article  CAS  Google Scholar 

  28. Merchak N, Silvestre V, Loquet D, Rizk T, Akoka S, Bejjani J (2017) A strategy for simultaneous determination of fatty acid composition, fatty acid position, and position-specific isotope contents in triacylglycerol matrices by C-13-NMR. Anal Bioanal Chem 409(1):307–315

    Article  CAS  Google Scholar 

  29. He H, Sun Y, Li B, Yu Q, Wang T, Feng Y (2013) Boronate affinity solid-phase extraction based on functionalized magnesia-zirconia composite for enrichment of nucleosides in human urine. Anal Methods 5(6):1435–1441

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Basic Research Program of China (973 Program) (2013CB910702), the National Natural Science Foundation of China (21475098, 2163506, 31670373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qi Feng.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.76 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhang, Z., He, XM. et al. Immobilization of zirconium-glycerolate nanowires on magnetic nanoparticles for extraction of urinary ribonucleosides. Microchim Acta 185, 43 (2018). https://doi.org/10.1007/s00604-017-2596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2596-2

Keywords

Navigation