Skip to main content
Log in

Microextraction of polycyclic aromatic hydrocarbons by using a stainless steel fiber coated with nanoparticles made from a porous aromatic framework

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A porous aromatic framework of type PAF-6 was synthesized and explored as a coating onto a steel wire for using in solid-phase microextraction of polycyclic aromatic hydrocarbons (PAHs), phthalate plasticizers, and n-alkanes. The extraction temperature, extraction time, salt concentration, agitation speed, desorption temperature, and desorption time were optimized. This method for SPME resulted in the enrichment factors ranging from 122 to 1090 for PAHs (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene), from 122 to 271 for plasticizers (diisobutyl phthalate, dibutyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate), and from 9 to 113 for n-alkanes (n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentadecane, n-hexadecane, n-octadecane and n-eicosane). The good extraction of the PAHs is assumed to be due to their π-stacking interaction and hydrophobic effect. The PAF-6 coated fibers are durable and can be reused more than 100 times without significant loss of extraction performance. In combination with GC-MS detection, the method has limits of detection in the range from 0.8 to 4.2 ng L−1 in case of PAHs. The relative standard deviations for five replicate determinations of the PAHs by using one fiber are in the range from 5.2 to 8.5%. When using different fibers, they range from 7.1 to 9.6%. The recoveries of PAHs from water samples at a spiking level of 20 ng L−1 are in the range from 89.5 to 103.1%, with relative standard deviations ranging from 4.0 to 9.3%.

A porous aromatic framework of type PAF-6 was synthesized and used as a novel coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by gas chromatography with mass spectrometric detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ben T, Qiu S (2013) Porous aromatic frameworks: synthesis, structure and functions. CrystEngComm 15(1):17–26

    Article  CAS  Google Scholar 

  2. Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131(25):8875–8883

    Article  CAS  Google Scholar 

  3. Luo Y, Li B, Liang L, Tan B (2011) Synthesis of cost-effective porous polyimides and their gas storage properties. Chem Commun 47(27):7704–7706

    Article  CAS  Google Scholar 

  4. Chen Q, Luo M, Hammershøj P, Zhou D, Han Y, Laursen BW, Yan CG, Han BH (2012) Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc 134(14):6084–6087

  5. Song WC, Xu XK, Chen Q, Zhuang ZZ,  Bu XH (2013) Nitrogen-rich diaminotriazine-based porous organic polymers for small gas storage and selective uptake. Polym Chem 4(17):4690–4696

  6. Lee JM, Briggs ME, Hasell T, Cooper AI (2016) Hyperporous carbons from hypercrosslinked polymers. Adv Mater 28(44):9804–9810

    Article  CAS  Google Scholar 

  7. McKeown NB, Budd PM (2010) Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules 43(12):5163–5176

    Article  CAS  Google Scholar 

  8. Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6022

    Article  CAS  Google Scholar 

  9. Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42(20):8012–8031

    Article  CAS  Google Scholar 

  10. Vilian AT, Puthiaraj P, Kwak CH, Hwang SK, Huh YS, Ahn WS, Han YK (2016) Fabrication of palladium nanoparticles on porous aromatic frameworks as a sensing platform to detect vanillin. ACS Appl Mater Interfaces 8(20):12740–12747

    Article  CAS  Google Scholar 

  11. Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 48(50):9457–9460

    Article  CAS  Google Scholar 

  12. Jing X, Zou D, Cui P, Ren H, Zhu G (2013) Facile synthesis of cost-effective porous aromatic materials with enhanced carbon dioxide uptake. J Mater Chem A 1(44):13926–13931

    Article  CAS  Google Scholar 

  13. Ma H, Li B, Zhang L, Han D, Zhu G (2015) Targeted synthesis of core-shell porous aromatic frameworks for selective detection of nitro aromatic explosives via fluorescence two-dimensional response. J Mater Chem A 3(38):19346–19352

    Article  CAS  Google Scholar 

  14. Vilian ATE, Puthiaraj P, Kwak CH, Choe SR, Huh YS, Ahn WS, Han YK (2016) Electrochemical determination of quercetin based on porous aromatic frameworks supported Au nanoparticles. Electrochim Acta 216:181–187

  15. Ren H, Ben T, Sun F, Guo M, Jing X, Ma H, Cai K, Qiu S, Zhu G (2011) Synthesis of a porous aromatic framework for adsorbing organic pollutants application. J Mater Chem 21(28):10348–10353

  16. Ren H, Ben T, Wang E, Jing X, Xue M, Liu B, Cui Y, Qiu S, Zhu G (2010) Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. Chem Commun 46(2):291–293

    Article  CAS  Google Scholar 

  17. Yuan Y, Sun F, Ren H, Jing X, Wang W, Ma H, Zhao H, Zhu G (2011) Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. J Mater Chem 21(35):13498–13502

  18. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62(19):2145–2148

    Article  CAS  Google Scholar 

  19. Li QL, Huang F, Wang XL, Wang X, Zhao RS (2017) Multiple-helix cobalt(II)-based metal-organic nanotubes on stainless steel fibers for solid-phase microextraction of chlorophenol and nitrophenols from water samples. Microchim Acta 184(6):1817–1825

    Article  CAS  Google Scholar 

  20. Lokhnauth JK, Snow NH (2005) Determination of parabens in pharmaceutical formulations by solid-phase microextraction-ion mobility spectrometry. Anal Chem 77(18):5938–5946

    Article  CAS  Google Scholar 

  21. Fresco-Cala B, Cárdenas S, Herrero-Martínez JM (2017) Preparation of porous methacrylate monoliths with oxidized single-walled carbon nanohorns for the extraction of nonsteroidal anti-inflammatory drugs from urine samples. Microchim Acta 184(6):1863–1871

    Article  CAS  Google Scholar 

  22. Gu ZY, Yang CX, Chang N, Yan XP (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45(5):734–745

  23. Chang N, Gu ZY, Wang HF, Yan XP (2011) Metal-organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes. Anal Chem 83(18):7094–7101

  24. Zhang J, Yang L, Wu M, Guo X, Zeng B, Zhao F (2017) Electrochemical preparation of poly(3-methylthiophene-carbazole)/graphene oxide composite coating for the highly effective solid-phase microextraction of some fragrance. Talanta 171:61–67

    Article  CAS  Google Scholar 

  25. Matin AA, Biparva P, Gheshlaghi M (2014) Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber. J Chromatogr A 1374(44):50–57

    Article  CAS  Google Scholar 

  26. Wu T, Wang J, Liang W, Zang X, Wang C, Wu Q, Wang Z (2017) Single layer graphitic carbon nitride-modified graphene composite as a fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons. Microchim Acta 184(7):2171–2180

    Article  CAS  Google Scholar 

  27. Cui XY, Gu ZY, Jiang DQ, Li Y, Wang HF, Yan XP (2009) In situ hydrothermal growth of metal organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81(23):9771–9777

  28. Li J, Liu Y, Su H, Wong YLE, Chen X, Chan TWD, Chen Q (2017) In situ hydrothermal growth of a zirconium-based porphyrinic metal-organic framework on stainless steel fibers for solid-phase microextraction of nitrated polycyclic aromatic hydrocarbons. Microchim Acta 184(10):3809–3815

  29. Jin Y, Li Z, Yang L, Xu J, Zhao L, Li Z, Niu J (2017) Porous aromatic framework 48/gel hybrid material coated solid-phase microextraction fiber for the determination of the migration of styrene from polystyrene food contact materials. Anal Chem 89(2):1290–1298

    Article  CAS  Google Scholar 

  30. Wu M, Chen G, Liu P, Zhou W, Jia Q (2016) Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection. Analyst 141(1):243–250

    Article  CAS  Google Scholar 

  31. Cai Y, Yan Z, Yang M, Huang X, Min W, Wang L, Cai Q (2016) Polydopamine decorated 3D nickel foam for extraction of sixteen polycyclic aromatic hydrocarbons. J Chromatogr A 1478:2–9

    Article  CAS  Google Scholar 

  32. Djozan D, Assadi Y (1999) Monitoring of polycyclic aromatic hydrocarbons in water using headspace solid-phase microextraction and capillary gas chromatography. Microchem J 63(2):276–284

    Article  CAS  Google Scholar 

  33. Zhao H, Jin Z, Su H, Jing X, Sun F, Zhu G (2011) Targeted synthesis of a 2D ordered porous organic framework for drug release. Chem Commun 47(22):6389–6391

    Article  CAS  Google Scholar 

  34. Wang W, Wang J, Zhang S, Cui P, Wang C, Wang Z (2016) A novel Schiff base network-1 nanocomposite coated fiber for solid-phase microextraction of phenols from honey samples. Talanta 161:22–30

    Article  CAS  Google Scholar 

  35. Amiri; A, Ghaemi F (2016) Thermally stable carbon nanofibers functionalized with poly(dimethylsiloxane) for solid-phase microextraction of polycyclic aromatic hydrocarbons prior to GC analysis. Microchim Acta 183 (6):1917–1924

  36. Purcaro G, Morrison P, Moret S, Conte LS, Marriott PJ (2007) Determination of polycyclic aromatic hydrocarbons in vegetable oils using solid-phase microextraction-comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. J Chromatogr A 1161(1–2):284–291

    Article  CAS  Google Scholar 

  37. Rajabi M, Moghadam AG, Barfi B, Asghari A (2016) Air-assisted dispersive micro-solid phase extraction of polycyclic aromatic hydrocarbons using a magnetic graphitic carbon nitride nanocomposite. Microchim Acta 183(4):1449–1458

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (31571925 and 31671930), the Natural Science Foundation of Hebei Province (B2016204136, B2016204146, B2017204025 and C2017204019) and the Graduate Student Innovation Fund Project in Hebei Province (CXZZSS2017065), respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuaihua Zhang or Zhi Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, Z., Wang, W. et al. Microextraction of polycyclic aromatic hydrocarbons by using a stainless steel fiber coated with nanoparticles made from a porous aromatic framework. Microchim Acta 185, 20 (2018). https://doi.org/10.1007/s00604-017-2577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2577-5

Keywords

Navigation