Skip to main content
Log in

Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflakes modified glassy carbon electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Simple and robustic mediator free graphene nanoflake modified glassy carbon electrode (GNF/GCE) was used for the simultaneous determination of vanillin (VAN) and guaiacol (GUA) in food products like chocolate and biscuits by using an amperometric method. Defect-free graphene nanoflakes were obtained by a surfactant assisted exfoliation approach. The resulting graphene flake was characterized by FE-SEM and Raman studies. The electrocatalytic oxidation of VAN and GUA occured at +0.59 V and +0.48 V vs. Ag/AgCl at GNF/GCE, under optimum experimental condition. A well-defined peak potential window (~160 mV) for the oxidation of VAn and GUA were observed in the modified electrode. Calibration curves of VAN and GUA were attained in the ranges of 0.1 × 10–7 M to 53 × 10–6 M and 0.3 × 10–7 M to 46 × 10–6 M with correlation coefficient of 0.9966 and 0.9951, respectively. A greater sensitivity and the detection limit of VAN and GUA at 1.24 × 10–8 M and 0.98 × 10–8 M were obtained by using mediator and metal free modified electrode system in phosphate buffer medium. The present method is quite modest and robustic for the detection of VAN and GUA at a trace level.

Sensitive electrochemical method for the quantitative detection of vanillin and guaiacol as food additive using defect-free graphene nanoflakes. Well-resolved oxidation peak current was shown in both analytes by differential pulse voltammetry method. The present method can be used for the simultaneous detection of vanillin and guaiacol in food samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walton N, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515. doi:10.1016/S0031-9422(03)00149-3

    Article  CAS  Google Scholar 

  2. Yan W, Meng H, NanNan S, WeiBing H (2014) Electrochemical detection of guaiacol in bamboo juice based on the enhancement effect of RGO nanosheets. Anal Methods 6:2729–2735. doi:10.1039/c4ay00195h

    Article  Google Scholar 

  3. Yang X, Zhang F, Hu Y et al (2014a) Gold nanoparticals doping graphene sheets nanocomposites sensitized screen-printed carbon electrode as a disposable platform for voltammetric determination of guaiacol in bamboo juice. Int J Electrochem Sci 9:5061–5072

    Google Scholar 

  4. Murakami Y, Hirata A, Ito S, Shoji M, Tanaka S, Yasui T, Machino M, Fujisawa S (2007) Re-evaluation of cyclooxygenase-2-inhibiting activity of vanillin and guaiacol in macrophages stimulated with lipopolysaccharide. Anticancer Res 27:801–808

    CAS  Google Scholar 

  5. Cava-Roda RM, Taboada-Rodríguez A, Valverde-Franco MT, Marín-Iniesta F (2012) Antimicrobial activity of vanillin and mixtures with cinnamon and clove essential oils in controlling Listeria monocytogenes and Escherichia coli O157:H7 in milk. Food Bioprocess Technol 5:2120–2131. doi:10.1007/s11947-010-0484-4

    Article  CAS  Google Scholar 

  6. Deng P, Xu Z, Zeng R, Ding C (2015a) Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film. Food Chem. doi:10.1016/j.foodchem.2015.02.035

    Google Scholar 

  7. Takahashi M, Sakamaki S, Fujita A (2013) Simultaneous analysis of guaiacol and vanillin in a vanilla extract by using high-performance liquid chromatography with electrochemical detection. Biosci Biotechnol Biochem 77:595–600. doi:10.1271/bbb.120835

    Article  CAS  Google Scholar 

  8. Rind FMA, Mughal UR, Memon AH et al (2009) Spectrophotometric analysis of vanillin from natural and synthetic sources. Asian J Chem 21:2849–2856

    CAS  Google Scholar 

  9. Hingse SS, Digole SB, Annapure US (2014) Method development for simultaneous detection of ferulic acid and vanillin using high-performance thin layer chromatography. J Anal Sci Technol 5:21. doi:10.1186/s40543-014-0021-6

    Article  Google Scholar 

  10. Watanabe T, Yamamoto A, Nagai S, Terabe S (1998) Micellar electrokinetic chromatography as an alternative to high-performance liquid chromatography for separation and determination of phenolic compounds in Japanese spirituous liquor. J Chromatogr A 793:409–413. doi:10.1016/S0021-9673(97)00931-X

    Article  CAS  Google Scholar 

  11. Pollnitz AP, Pardon KH, Sykes M, Sefton MA (2004) The effects of sample preparation and gas chromatograph injection techniques on the accuracy of measuring guaiacol, 4-methylguaiacol and other volatile oak compounds in oak extracts by stable isotope dilution analyses. J Agric Food Chem 52:3244–3252. doi:10.1021/jf035380x

    Article  CAS  Google Scholar 

  12. Perumal V, Hashim U, Gopinath SCB et al (2015) “spotted Nanoflowers”: gold-seeded zinc oxide Nanohybrid for selective bio-capture. Sci Rep 5:12231. doi:10.1038/srep12231

    Article  CAS  Google Scholar 

  13. Haarindraprasad R, Hashim U, Gopinath SCB et al (2015) Low temperature annealed zinc oxide nanostructured thin film-based transducers: characterization for sensing applications. PLoS One 10:e0132755. doi:10.1371/journal.pone.0132755

    Article  CAS  Google Scholar 

  14. Gopinath SCB, Perumal V, Kumaresan R et al (2016) Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against mycobacterium tuberculosis. Microchim Acta. doi:10.1007/s00604-016-1911-7

    Google Scholar 

  15. Gan T, Shi Z, Deng Y et al (2014a) Morphology-dependent electrochemical sensing properties of manganese dioxide-graphene oxide hybrid for guaiacol and vanillin. Electrochim Acta 147:157–166. doi:10.1016/j.electacta.2014.09.116

    Article  CAS  Google Scholar 

  16. Randviir EP, Banks CE (2014) The oxygen reduction reaction at graphene modified electrodes. Electroanalysis 26:76–83. doi:10.1002/elan.201300477

    Article  CAS  Google Scholar 

  17. Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944. doi:10.1039/c2cs35105f

  18. Wantz F, Banks CE, Compton RG (2005) Edge plane pyrolytic graphite electrodes for stripping voltammetry: a comparison with other carbon based electrodes. Electroanalysis 17:655–661. doi:10.1002/elan.200403148

    Article  CAS  Google Scholar 

  19. Wu H, Lin Q, Batchelor-McAUley C et al (2016) Stochastic detection and characterisation of individual ferrocene derivative tagged graphene Nanoplatelets. Analyst. doi:10.1039/C5AN02550H

    Google Scholar 

  20. Petridis C, Konios D, Stylianakis MM et al (2016) Solution processed reduced graphene oxide electrodes for organic photovoltaics. Nanoscale Horiz. doi:10.1039/C5NH00089K

    Google Scholar 

  21. Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5:8848. doi:10.1039/c2ee22238h

    Article  CAS  Google Scholar 

  22. Prabakaran E, Pandian K (2015) Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode. Food Chem 166:198–205. doi:10.1016/j.foodchem.2014.05.143

  23. Yang Y, Shi W, Zhang R et al (2016a) Electrochemical exfoliation of graphite into nitrogen-doped graphene in glycine solution and its energy storage properties. Electrochim Acta 204:100–107. doi:10.1016/j.electacta.2016.04.063

    Article  CAS  Google Scholar 

  24. Ilnicka A, Lukaszewicz JP (2016) Nanoscale exfoliation of graphene sheets for manufacturing of 3D mesoporous structures. J Nanosci Nanotechnol 16:9997–10000. doi:10.1166/jnn.2016.12085

    Article  CAS  Google Scholar 

  25. Yang W, Chen G, Shi Z, Liu CC, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G (2013) Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater 12: 792-797. doi: 10.1038/nmat3695.

  26. Wang J, Chen L, Wu N et al (2016) Uniform graphene on liquid metal by chemical vapour deposition at reduced temperature. Carbon N Y 96:799–804. doi:10.1016/j.carbon.2015.10.015

    Article  CAS  Google Scholar 

  27. Shukla A, Bhat SD, Pillai VK (2016) Simultaneous unzipping and sulfonation of multi-walled carbon nanotubes to sulfonated graphene nanoribbons for nanocomposite membranes in polymer electrolyte fuel cells. J Memb Sci. doi:10.1016/j.memsci.2016.08.019

    Google Scholar 

  28. Haar S, Bruna M, Lian JX et al (2016) Liquid-phase exfoliation of graphite into single and few layers graphene with α-functionalized alkanes. J Phys Chem Lett Accepted. doi:10.1021/acs.jpclett.6b01260

    Google Scholar 

  29. Du W, Jiang X, Zhu L (2013) From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. J Mater Chem A 1:10592. doi:10.1039/c3ta12212c

    Article  CAS  Google Scholar 

  30. Chen L, Tang Y, Wang K et al (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137. doi:10.1016/j.elecom.2010.11.033

    Article  CAS  Google Scholar 

  31. Hernández CN, García MBG, Santos DH et al (2016) Aqueous UV-VIS spectroelectrochemical study of the voltammetric reduction of graphene oxide on screen-printed carbon electrodes. Electrochem Commun 64:65–68. doi:10.1016/j.elecom.2016.01.017

    Article  Google Scholar 

  32. Niu L, Li M, Tao X et al (2013) Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nano 5:7202–7208. doi:10.1039/c3nr02173d

    CAS  Google Scholar 

  33. Liu SQ, Sun WH, Hu FT (2012) Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent. Sensors Actuators B Chem 173:497–504. doi:10.1016/j.snb.2012.07.052

    Article  CAS  Google Scholar 

  34. Keeley GP, McEvoy N, Nolan H et al (2012) Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films. Anal Methods 4:2048. doi:10.1039/c2ay25156f

    Article  CAS  Google Scholar 

  35. Mutyala S, Mathiyarasu J (2015) Preparation of graphene nanoflakes and its application for detection of hydrazine. Sensors Actuators B Chem 210:692–699. doi:10.1016/j.snb.2015.01.033

    Article  CAS  Google Scholar 

  36. Keeley GP, O’Neill A, Holzinger M et al (2011) DMF-exfoliated graphene for electrochemical NADH detection. Phys Chem Chem Phys 13:7747–7750. doi:10.1039/c1cp20060g

    Article  CAS  Google Scholar 

  37. Lu W, Liu S, Qin X et al (2012) High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. J Mater Chem 22:8775. doi:10.1039/c2jm16741g

  38. Wu C, Cheng Q, Wu K (2015) Electrochemical functionalization of N -methyl-2-pyrrolidone-exfoliated graphene nanosheets as highly sensitive analytical platform for phenols. Anal Chem 87:3294–3299. doi:10.1021/ac504309j

  39. Lu J, Drzal LT, Worden RM, Lee I (2007) Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem Mater 19:6240–6246. doi:10.1021/cm702133u

    Article  CAS  Google Scholar 

  40. Song X, Shi Z, Tan X et al (2014) One-step solvent exfoliation of graphite to produce a highly-sensitive electrochemical sensor for tartrazine. Sensors Actuators B Chem 197:104–108. doi:10.1016/j.snb.2014.02.064

    Article  CAS  Google Scholar 

  41. Yang X, Long J, Sun D (2016b) Highly-sensitive electrochemical determination of rutin using NMP-exfoliated graphene Nanosheets-modified electrode. Electroanalysis 28:83–87. doi:10.1002/elan.201500449

    Article  CAS  Google Scholar 

  42. Shahriary L, Athawale A (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2:58–63

    Google Scholar 

  43. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

  44. Shang L, Zhao F, Zeng B (2014) Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode. Food Chem 151:53–57. doi:10.1016/j.foodchem.2013.11.044

    Article  CAS  Google Scholar 

  45. Peng J, Hou C, Hu X (2012) A graphene-based electrochemical sensor for sensitive detection of vanillin. Int J Electrochem Sci 7:1724–1733

    CAS  Google Scholar 

  46. Laviron E (1972) Theoretical study of a reversible reaction followed by a chemical reaction in thin layer linear potential sweep voltammetry. J Electroanal Chem Interfacial Electrochem 39:1–23. doi:10.1016/S0022-0728(72)80472-8

    Article  CAS  Google Scholar 

  47. Gan T, Shi Z, Deng Y, Sun J, Wang H (2014b) Morphology dependent electrochemical sensing properties of manganese dioxide graphene oxide hybrid for guaiacol and vanillin. Electrochim Acta 147:157–166. doi:10.1016/j.electacta.2014.09.116

    Article  CAS  Google Scholar 

  48. Yang X, Zhang F, Yangjian H, Dizhao C, Zegiang H, Xiong L (2014b) Gold nanoparticles doping graphene sheets nanocomposites sensitized screen-printed carbon electrode as a disposable platform for Voltammetric determination of Guaiacol in bamboo juice. Int J Electrochem Sci 9:5061–5072

    Google Scholar 

  49. Gan T, Zhaoxia S, Yaping D, Junyong S, Haibo W (2014c) Morphology-dependent electrochemical sensing properties of manganese dioxide-graphene oxide hybrid for guaiacol and vanillin. Electrochim Acta 147:157–166

    Article  CAS  Google Scholar 

  50. Yong Sun J, Gan T, Deng Y P, Shi Z X, Zhen L (2015) Pt nanoparticles - functionalized Hierarchically porous - Al2O3 hallow spheres based electrochemical sensor for ultrasensitive Guaiacol Detection. Sensors and Actuators B 211:339–345.doi:org/10.1016/j.snb.2015.01.104

  51. Chawla S, Rawal R, Pundir CS (2011) Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotube/polyaniline-modified gold electrode. J Biotechnol 156:39–45. doi:10.1016/j.jbiotech.2011.08.008

    Article  CAS  Google Scholar 

  52. Brondani D, Soura BD, Souza S, Neves A, Vieira IC (2013) PEI-coated gold nanoparticles decorated with laccase: a new platform for direct electrochemistry of enzymes and biosensing applications. Biosens Bioelectron 42:242–247. doi:10.1016/j.bios.2012.10.087

    Article  CAS  Google Scholar 

  53. Chawla S, Rawal R, Kumar D, Pundir CS (2012) Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold elecrode. Anal Biochem 430:16–23

    Article  CAS  Google Scholar 

  54. Wu Y, Huang M, Song N, Hu W (2014) Electrochemical detection of guaiacol in bamboo juice based on the enhancement effect of RGO nanosheets. Anal Methods 6:2729–2735. doi:10.1039/c4ay00195h

  55. Yang W, Wu L, Zhao F, Zen B (2017) A vanillin electrochemical sensor based on molecularly imprinted poly (1-vinyl-3-octylimidazole hexafluoride phosphorus) multiwalled carbon nanotubes@polydopamine-carboxyl single walled carbon nanotubes composite. Sensors Actuators B 239:481–487. doi:10.1016/j.snb.2016.08.041

    Article  Google Scholar 

  56. Vilan ATE, Kwak CH, Hwang SK, Huh YS, Ahn WS, Han YK (2016) Fabrication of palladium nanoparticles on porous aromatic frameworks as a sensing platform to detect vanillin. Appl Mater Interfaces 8:12740–12747. doi:10.1021/acsami.6b03942

    Article  Google Scholar 

  57. Ziyatdinova G, Kozlova E, Ziganshina E, Budnikov H (2016) Surfactant/carbon nanofibrous modified electrode for the determination of vanillin. Monatsh Chem 147:191–200. doi:10.1007/s00706-015-1559-8

    Article  CAS  Google Scholar 

  58. Veeramani V, Madhu R, Chen SM, Veerakumar P, Syu JJ, Liu SB (2016) Cajeput tree bark derived activated carbon for the practical electrochemical detection of vanillin. New J Chem 39:9109–9115. doi:10.1039/C5NJ01634G

    Article  Google Scholar 

  59. Silva TR, Brondani D, Zapp E, Vieira IC (2015) Electrochemical sensor based on gold nanoparticles stabilized in poly (allylamine hydrochloride) for determination of vanillin. Electroanalysis 27:465–472. doi:10.1002/elan.201400517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of author (Dr.K.P.) is grateful to Prof. M.S. Ramachandra Rao, Department of Physics, IIT Madras for providing Raman Instrument. And also thankful to the Prof. M. V. Sangaranarayanan and M. V. Beena, Department of Chemistry, IIT Madras for providing EIS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pandian.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 560 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiyarasi, J., Meenakshi, S., Pandian, K. et al. Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflakes modified glassy carbon electrode. Microchim Acta 184, 2131–2140 (2017). https://doi.org/10.1007/s00604-017-2161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2161-z

Keywords

Navigation