Skip to main content
Log in

Reagentless and label-free voltammetric immunosensor for carcinoembryonic antigen based on polyaniline nanowires grown on porous conducting polymer composite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A reagentless and label-free voltammetric modified electrode was developed for the carcinoembryonic antigen (CEA), an important biomarker for colorectal adenocarcinoma. It is based on the use of a reticular hybrid composite consisting of polyaniline (PANI) nanowires grown on the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) that was doped with an ionic liquid (IL). The composite features excellent electrical conductivity and a porous structure, a high specific surface and inherent redox activity. It was placed on a glassy carbon electrode (GCE) and antibody against CEA was immobilized on its surface. The redox current of PANI, measured typically at 0.16 V (vs. Ag/AgCl) serves as the analytical information. This electrode displays linear range that extends from 0.001 to 10 ng mL−1, with a detection limit as low as 0.7 pg mL−1. It also possesses excellent temporal stability and selectivity.

A sensitive, label-free and reagentless modified electrode for CEA was developed based on the combination of two different conducting polymers, polyaniline nanowires and porous PEDOT/IL nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu W, Cao X, Tao L, Ge J, Dong J, Qian W (2014) A novel label-free amperometric immunosensor for carcinoembryonic antigen based on Ag nanoparticle decorated infinite coordination polymer fibres. Biosens Bioelectron 57:219–225

    Article  CAS  Google Scholar 

  2. Iwazawa T, Kanoh T, Matsui S, Monden T (2000) Diagnosis of lung cancer metastasis with CEA extracted from the dissected regional lymph nodes. Lung Cancer 29(1):254–254

  3. Miao J, Wang X, Lu L, Zhu P, Mao C, Zhao H, Song Y, Shen J (2014) Electrochemical immunosensor based on hyperbranched structure for carcinoembryonic antigen detection. Biosens Bioelectron 58:9–16

    Article  CAS  Google Scholar 

  4. Zamcheck N, Martin EW (1981) Factors controlling the circulating CEA levels in pancreatic cancer: some clinical correlations. Cancer 47:1620–1627

    Article  CAS  Google Scholar 

  5. Li BT, Lou E, Hsu M, Helena AY, Naidoo J, Zauderer MG, Sima C, Johnson ML, Daras M, DeAngelis LM (2016) Serum biomarkers associated with clinical outcomes fail to predict brain metastases in patients with stage IV non-small cell lung cancers. PLoS One 11:e0146063

    Article  Google Scholar 

  6. Yuan J, Wang G, Majima K, Matsumoto K (2001) Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay. Anal Chem 73:1869–1876

    Article  CAS  Google Scholar 

  7. Fu Z, Yang Z, Tang J, Liu H, Yan F, Ju H (2007) Channel and substrate zone two-dimensional resolution for chemiluminescent multiplex immunoassay. Anal Chem 79:7376–7382

    Article  CAS  Google Scholar 

  8. Sun X, Lei C, Guo L, Zhou Y (2016) Giant magneto-resistance based immunoassay for the tumor marker carcinoembryonic antigen. Microchim Acta 183(3):1107–1114

    Article  CAS  Google Scholar 

  9. Cioffi M, Vietri M, Gazzerro P, Magnetta R, D’Auria A, Durante A, Nola E, Puca G, Molinari A (2001) Serum anti-p53 antibodies in lung cancer: comparison with established tumor markers. Lung Cancer 33:163–169

    Article  CAS  Google Scholar 

  10. Gao X, Zhang Y, Chen H, Chen Z, Lin X (2011) Amperometric immunosensor for carcinoembryonic antigen detection with carbon nanotube-based film decorated with gold nanoclusters. Anal Biochem 414:70–76

    Article  CAS  Google Scholar 

  11. Huang J, Tian J, Zhao Y, Zhao S (2015) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sensors Actuators B Chem 206:570–576

    Article  CAS  Google Scholar 

  12. Liu J, Wang J, Wang T, Li D, Xi F, Wang J, Wang E (2015) Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. Biosens Bioelectron 65:281–286

    Article  CAS  Google Scholar 

  13. Lin J, Zhang H, Niu S (2015) Simultaneous determination of carcinoembryonic antigen and α-fetoprotein using an ITO immunoelectrode modified with gold nanoparticles and mesoporous silica. Microchim Acta 182(3–4):719–726

    Article  CAS  Google Scholar 

  14. Xu T, Li X, Xie Z, Li X, Zhang H (2015) Poly (o-phenylenediamine) nanosphere-conjugated capture antibody immobilized on a glassy carbon electrode for electrochemical immunoassay of carcinoembryonic antigen. Microchim Acta 182(15–16):2541–2549

    Article  CAS  Google Scholar 

  15. Zhao D, Wang Y, Nie G (2016) Electrochemical immunosensor for the carcinoembryonic antigen based on a nanocomposite consisting of reduced graphene oxide, gold nanoparticles and poly (indole-6-carboxylic acid). Microchim Acta 183(11):2925–2932

    Article  CAS  Google Scholar 

  16. Chen J, Yan F, Dai Z, Ju H (2005) Reagentless amperometric immunosensor for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase. Biosens Bioelectron 21:330–336

    Article  CAS  Google Scholar 

  17. Kang Y, Kim SK, Lee C (2004) Doping of polyaniline by thermal acid-base exchange reaction. Mater Sci Eng C 24:39–41

    Article  Google Scholar 

  18. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. J Phys Chem B 105:8475–8491

    Article  CAS  Google Scholar 

  19. Luo YC, Do JS (2004) Urea biosensor based on PANi(urease)-Nafion®/Au composite electrode. Biosens Bioelectron 20:15–23

    Article  CAS  Google Scholar 

  20. Colleran JJ, Breslin CB (2012) Simultaneous electrochemical detection of the catecholamines and ascorbic acid at PEDOT/S-β-CD modified gold electrodes. J Electroanal Chem 667:30–37

    Article  CAS  Google Scholar 

  21. Kannan B, Williams D, Laslau EC, Travas-Sejdic J (2012) The electrochemical growth of highly conductive single PEDOT (conducting polymer):BMIPF6 (ionic liquid) nanowires. J Mater Chem 22:18132–18135

    Article  CAS  Google Scholar 

  22. Xu G, Li B, Wang X, Luo X (2014) Electrochemical sensor for nitrobenzene based on carbon paste electrode modified with a poly(3,4-ethylenedioxythiophene) and carbon nanotube nanocomposite. Microchim Acta 181:463–469

    Article  CAS  Google Scholar 

  23. Kakhki S, Barsan MM, Shams E, Brett CM (2012) Development and characterization of poly(3,4-ethylenedioxythiophene)-coated poly(methylene blue)-modified carbon electrodes. Synth Met 161:2718–2726

    Article  Google Scholar 

  24. Tsuda T, Hussey CL (2007) Electrochemical applications of room-temperature ionic liquids. Electrochem Soc Interface 16:42–49

    Google Scholar 

  25. Kwak K, Kumar SS, Pyo K, Lee D (2013) Ionic liquid of a gold nanocluster: a versatile matrix for electrochemical biosensors. ACS Nano 8:671–679

    Article  Google Scholar 

  26. Quinn BM, Ding Z, Moulton R, Bard AJ (2002) Novel electrochemical studies of ionic liquids. Langmuir 18:1734–1742

    Article  CAS  Google Scholar 

  27. Badre C, Marquant L, Alsayed AM, Hough LA (2012) Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv Funct Mater 22:2723–2727

    Article  CAS  Google Scholar 

  28. Pringle JM, Lynam C, Wallace GG, Forsyth M, MacFarlane DR (2008) One-step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid. Adv Funct Mater 18:2031–2040

    Article  CAS  Google Scholar 

  29. Sheng G, Xu G, Xu S, Wang S, Luo X (2015) Cost-effective preparation and sensing application of conducting polymer PEDOT/ionic liquid nanocomposite with excellent electrochemical properties. RSC Adv 5:20741–20746

    Article  CAS  Google Scholar 

  30. Adeloju SB, Wallace GG (1996) Conducting polymers and the bioanalytical sciences: new tools for biomolecular communications. Analyst 121(6):699–703

    Article  CAS  Google Scholar 

  31. Lassalle N, Vieil E, Correia JP, Abrantes LM (2001) Study of DNA hybridization by photocurrent spectroscopy. Synth Met 119(1–3):407–408

    Article  CAS  Google Scholar 

  32. Livache T, Roget A, Dejean E, Barthet C, Bidan G, Teoulen R (1995) Biosensing effects in functionalized electroconducting conjugated polymer layers: addressable DNA matrix for the detection of gene mutations. Synth Met 71(1):2143–2146

    Article  CAS  Google Scholar 

  33. Jia Q, Li J, Wang L, Zhu G, Zheng M (2007) Electrically conductive epoxy resin composites containing polyaniline with different morphologies. Mater Sci Eng A 448(1):356–360

    Article  Google Scholar 

  34. Wang Z, Liu S, Wu P, Cai C (2009) Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal Chem 81(4):1638–1645

    Article  CAS  Google Scholar 

  35. Peng H, Zhang L, Soeller C, Travas-Sejdic J (2009) Conducting polymers for electrochemical DNA sensing. Biomater 30(11):2132–2148

    Article  CAS  Google Scholar 

  36. Peng H, Soeller C, Vigar NA, Caprio V, Travas-Sejdic J (2007) Label-free detection of DNA hybridization based on a novel functionalized conducting polymer. Biosens Bioelectron 22(9):1868–1873

    Article  CAS  Google Scholar 

  37. Li Y, Zhang Q, Zhao X, Yu P, Wu L, Chen D (2012) Enhanced electrochemical performance of polyaniline/sulfonated polyhedral oligosilsesquioxane nanocomposites with porous and ordered hierarchical nanostructure. J Mater Chem 22:1884–1892

    Article  CAS  Google Scholar 

  38. Li Y, Zhao X, Yu P, Zhang Q (2012) Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor. Langmuir 29:493–500

    Article  CAS  Google Scholar 

  39. Limbut W, Kanatharana P, Mattiasson B, Asawatreratanakul P, Thavarungkul P (2006) A reusable capacitive immunosensor for carcinoembryonic antigen (CEA) detection using thiourea modified gold electrode. Anal Chim Acta 56:55–61

    Article  Google Scholar 

  40. Kimura H, Matsuzawa S, Tu CY, Kitamori T, Sawada T (1996) Ultrasensitive heterogeneous immunoassay using photothermal deflection spectroscopy. 2. Quantitation of ultratrace carcinoembryonic antigen in human sera. Anal Chem 68:3063–3067

    Article  CAS  Google Scholar 

  41. Laboria N, Fragoso A, Kemmner W, Latta D, Nilsson O, Luz Botero M, Drese K, O’Sullivan CK (2010) Amperometric immunosensor for carcinoembryonic antigen in colon cancer samples based on monolayers of dendritic bipodal scaffolds. Anal Chem 82:1712–1719

    Article  CAS  Google Scholar 

  42. Norouzi P, Gupta VK, Faridbod F, Pirali-Hamedani M, Larijani B, Ganjali MR (2011) Carcinoembryonic antigen admittance biosensor based on Au and ZnO nanoparticles using FFT admittance voltammetry. Anal Chem 83:1564–1570

    Article  CAS  Google Scholar 

  43. Tang D, Yuan R, Chai Y (2006) Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. J Phys Chem B 110:11640–11646

    Article  CAS  Google Scholar 

  44. Yang M, Chen Y, Xiang Y, Yuan R, Chai Y (2013) In situ energy transfer quenching of quantum dot electrochemiluminescence for sensitive detection of cancer biomarkers. Biosens Bioelectron 50:393–398

    Article  CAS  Google Scholar 

  45. Zhang Y, Lu F, Yan Z, Wu D, Ma H, Du B, Wei Q (2015) Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen. Microchim Acta 182(7–8):1421–1429

    Article  CAS  Google Scholar 

  46. Lu W, Lin T, Wang Y, Cao X, Dong J, Qian W (2015) An electrochemical immunosensor for simultaneous multiplexed detection of two lung cancer biomarkers using Au nanoparticles coated resin microspheres composed of L-tryptophan and caffeic acid. Ionics 21:1141–1152

    Article  CAS  Google Scholar 

  47. Guo A, Li Y, Cao W, Meng X, Wu D, Wei Q, Du B (2015) An electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 199 based on Au@CuxOS yolk-shell nanostructures with porous shells as labels. Biosens Bioelectron 63:39–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21275087, 21422504), the Natural Science Foundation of Shandong Province of China (JQ201406 and ZR2016BM05), and the Taishan Scholar Program of Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Luo.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Hui, N. & Luo, X. Reagentless and label-free voltammetric immunosensor for carcinoembryonic antigen based on polyaniline nanowires grown on porous conducting polymer composite. Microchim Acta 184, 889–896 (2017). https://doi.org/10.1007/s00604-016-2068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2068-0

Keywords

Navigation