Skip to main content
Log in

Towards label-free mid-infrared protein assays: in-situ formation of bare gold nanoparticles for surface enhanced infrared absorption spectroscopy of bovine serum albumin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Surface enhanced infrared absorption spectroscopy (SEIRAS) with attenuated total reflection (ATR) configuration has been used to determine bovine serum albumin (BSA) protein adsorbed onto bare gold nanoparticles (AuNPs). The AuNPs forming the SEIRA-active substrate were directly synthesized inside the ATR liquid cell taking advantage of stainless steel assisted synthesis via the walls composing the ATR compartment. The formation of the AuNPs can be directly monitored via the enhancement of the corresponding water absorption features. The absorbance of BSA at the AuNPs deposited onto the Si ATR waveguide is significantly enhanced when compared to bare Si, thereby improving the sensitivity of detection. Apparently, the presence of the AuNPs layer at the ATR waveguide surface at the measured conditions does not affect the secondary structure of the protein. Measurements were performed in water and confirmed in deuterium oxide, which significantly reduces the strongly absorbing mid-infrared background of water in the spectral regime of interest. The limits of detection achieved for BSA protein analysis in water and deuterium oxide media are 1.93 and 4.15 mg·L−1, respectively, and the precisions at a 250 mg·L−1 concentration are 11.9% and 8.1%, respectively.

Bovine serum albumin has been determined via mid-infrared surface enhanced infrared absorption spectroscopy using an attenuated total reflection configuration. The assay is taking advantage of the signal enhancement caused by gold nanoparticles that were synthesized in situ by a stainless steel mediated method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. López-Lorente AI, Mizaikoff B (2016) Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem 408:2875–2889

    Article  Google Scholar 

  2. Wang P, Bohr W, Otto M, Danzer KM, Mizaikoff B (2015) Quantifying amyloid fibrils in protein mixtures via infrared attenuated-total-reflection spectroscopy. Anal Bioanal Chem 407:4015–4021

    Article  CAS  Google Scholar 

  3. Harstein A, Kirtley JR, Tsang JC (1980) Enhancement of the infrared absorption from molecular monolayers with thin metal Overlayers. Phys Rev Lett 45:201–204

    Article  Google Scholar 

  4. Osawa M (2001) Surface-enhanced infrared absorption. Top Appl Phys 81:163–187

    Article  CAS  Google Scholar 

  5. Ataka K, Heberle J (2007) Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal Bioanal Chem 388:47–54

    Article  CAS  Google Scholar 

  6. Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–718

    Article  CAS  Google Scholar 

  7. Enders D, Nagao T, Pucci A, Nakayama T, Aono M (2011) Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold. Phys Chem Chem Phys 13:4935–4941

    Article  CAS  Google Scholar 

  8. López-Lorente AI, Sieger M, Valcárcel M, Mizaikoff B (2014) Infrared attenuated Total reflection spectroscopy for the characterization of gold nanoparticles in solution. Anal Chem 86:783–789

    Article  Google Scholar 

  9. López-Lorente AI, Simonet BM, Valcárcel M, Eppler S, Schindl R, Kranz C, Mizaikoff B (2014) Characterization of stainless steel assisted bare gold nanoparticles and their analytical potential. Talanta 118:321–327

    Article  Google Scholar 

  10. López-Lorente AI, Valcárcel M, Mizaikoff B (2014) Continuous flow synthesis and characterization of tailor-made bare gold nanoparticles for use in SERS. Microchim Acta 181:1101–1108

    Article  Google Scholar 

  11. López-Lorente AI, Simonet BM, Valcárcel M, Mizaikoff B (2013) Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes. Anal Chim Acta 788:122–128

    Article  Google Scholar 

  12. Jin B, Bao WJ, Wu ZQ, Xia XH (2012) In situ monitoring of protein adsorption on a nanoparticulated gold film by attenuated Total reflection surface-enhanced infrared absorption spectroscopy. Langmuir 28:9460–9465

    Article  CAS  Google Scholar 

  13. Jiang X, Zuber A, Heberle J, Ataka K (2008) In situ monitoring of the orientated assembly of strep-tagged membrane proteins on the gold surface by surface enhanced infrared absorption spectroscopy. Phys Chem Chem Phys 10:6381–6387

    Article  CAS  Google Scholar 

  14. Xu JY, Chen TW, Bao WJ, Wang K, Xia XH (2012) Label-free strategy for In-situ analysis of protein binding interaction based on attenuated Total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). Langmuir 28:17564–17570

    Article  CAS  Google Scholar 

  15. Ataka K, Heberle J (2004) Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes. J Am Chem Soc 126:9445–9457

    Article  CAS  Google Scholar 

  16. Ataka K, Giess F, Knoll W, Naumann R, Haber-Pohlmeier S, Richter B, Heberle J (2004) Oriented attachment and membrane reconstitution of his-tagged cytochrome c oxidase to a gold electrode: in situ monitoring by surface-enhanced infrared absorption spectroscopy. J Am Chem Soc 126:16199–16206

    Article  CAS  Google Scholar 

  17. Wisitruangsakul N, Zebger I, Ly KH, Murgida DH, Ekgasit S, Hildebrandt P (2008) Redox-linked protein dynamics of cytochrome c probed by time-resolved surface enhanced infrared absorption spectroscopy. Phys Chem Chem Phys 10:5276–5286

    Article  CAS  Google Scholar 

  18. Lu R, Li WW, Katzir A, Raichlin Y, Yu HQ, Mizaikoff B (2015) Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst 140:765–770

    Article  CAS  Google Scholar 

  19. Tsai DH, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA (2011) Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated Total reflectance!Fourier transform infrared spectroscopy. Langmuir 27:9302–9313

    Article  CAS  Google Scholar 

  20. Tsai DH, DelRio FW, Keene AM, Tyner KM, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA (2011) Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27:2464–2477

    Article  CAS  Google Scholar 

  21. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307

    Article  CAS  Google Scholar 

  22. Moulton SE, Barisci JN, McQuillan AJ, Wallace GG (2003) ATR-IR spectroscopic studies of the influence of phosphate buffer on adsorption of immunoglobulin G to TiO2. Colloids Surf A Physicochem Eng Asp 220:159–167

    Article  CAS  Google Scholar 

  23. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120

    Article  CAS  Google Scholar 

  24. Massarini E, Wästerby P, Landström L, Lejon C, Beck O, Andersson PO (2015) Methodologies for assessment of limit of detection and limit of identification using surface-enhanced Raman spectroscopy. Sensors Actuators B 207:437–446

    Article  CAS  Google Scholar 

  25. Militello V, Casarino C, Emanuele A, Giostra A, Pullara F, Leone M (2004) Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys Chem 107:175–187

    Article  CAS  Google Scholar 

  26. Lad MD, Birembaut F, Matthew JM, Frazier RA, Green RJ (2006) The adsorbed conformation of globular proteins at the air/water interface. Phys Chem Chem Phys 8:2179–2186

    Article  CAS  Google Scholar 

  27. Dovbeshko G, Fesenko O, Nazariva A (2006) Effect of nanostructured metal surface on SEIRA spectra of albumin and nucleic acids. J Phys Stud 10:127–134

    CAS  Google Scholar 

  28. Bouhekka A, Bürgi T (2012) In situ ATR-IR spectroscopy study of adsorben protein: visible light denaturalization of bovine serum albumin on TiO2. Appl Surf Sci 261:369–374

    Article  CAS  Google Scholar 

  29. Guo H, Kimura T, Furutani Y (2013) Distortion of the amide-I and -II bands of an α-helical membrane protein, pharaonis halorhodopsin, depends on thickness of gold films utilized for surface-enhanced infrared absorption spectroscopy. Chem Phys 419:8–16

    Article  CAS  Google Scholar 

  30. Jiang X, Zaitseva E, Schmidt M, Siebert F, Engelhard M, Schlesinger R, Ataka K, Vogel R, Heberle J (2008) Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy. Proc Natl Acad Sci 105:12113–12117

    Article  CAS  Google Scholar 

  31. Ataka K, Heberle J (2003) Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectroscopy of a protein monolayer. J Am Chem Soc 125:4986–4987

    Article  CAS  Google Scholar 

  32. Nowak C, Luening C, Schach D, Baurecht D, Knoll W, Naumann RLC (2009) Electron transfer kinetics of cytochrome C in the Submillisecond time regime using time-resolved surface-enhanced infrared absorption spectroscopy. J Phys Chem C 113:2256–2262

    Article  CAS  Google Scholar 

  33. Ataka K, Heberle J (2006) Use of surface enhanced infrared absorption spectroscopy (SEIRA) to probe the functionality of a protein monolayer. Biopolymers 82:415–419

    Article  CAS  Google Scholar 

  34. Sieger M, Haas J, Jetter M, Michler M, Godejohann M, Mizaikoff B (2016) Mid-infrared spectroscopy platform based on GaAs/AlGaAs thin-film waveguides and quantum Cascade lasers. Anal Chem 88:2558–2562

    Article  CAS  Google Scholar 

  35. Wang X, Karlsson M, Sieger M, Österlund L, Nikolajeff F, Mizaikoff B (2014) Diamonds are a Spectroscopist’s best friend: thin-film diamond mid-infrared waveguides for advanced chemical sensors/biosensors. Anal Chem 86:8136–8141

    Article  CAS  Google Scholar 

  36. López-Lorente AI, Wang P, Sieger M, Vargas Catalan E, Karlsson M, Nikolajeff F, Österlund L, Mizaikoff B (2016) Mid-infrared thin-film diamond waveguides combined with tunable quantum cascade lasers for analyzing the secondary structure of proteins. Phys Status Solidi A. doi:10.1002/pssa.201600134

    Google Scholar 

  37. Mizaikoff B (2013) Waveguide-enhanced mid-infrared chem/bio sensors. Chem Soc Rev 42:8683–8699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.I. López-Lorente wishes to thank the Alexander von Humboldt Foundation for the award of a Postdoctoral Fellowship at the Institute of Analytical and Bioanalytical Chemistry (University of Ulm, Germany). This work was in part supported by the Boehringer Ingelheim Ulm University BioCenter (BIU), and by the International Graduate School in Molecular Medicine at the University of Ulm, which provided a graduate student fellowship. Funding by the Horizon 2020 Framework Program of the European Union within the MSCA RISE Project TROPSENSE is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángela Inmaculada López-Lorente.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Lorente, Á.I., Wang, P. & Mizaikoff, B. Towards label-free mid-infrared protein assays: in-situ formation of bare gold nanoparticles for surface enhanced infrared absorption spectroscopy of bovine serum albumin. Microchim Acta 184, 453–462 (2017). https://doi.org/10.1007/s00604-016-2031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2031-0

Keywords

Navigation