Skip to main content
Log in

Voltammetric paracetamol sensor using a gold electrode made from a digital versatile disc chip and modified with a hybrid material consisting of carbon nanotubes and copper nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A composite consisting of carbon nanotubes (CNT) and copper nanoparticles (CuNPs) was prepared by a chemical reduction method, and its structure characterized by scanning electron microscopy, transmission electron microscopy energy dispersive spectroscopy and FT-IR spectrometry. The hybrid composite was deposited on the surface of a disposable gold electrode that was manufactured from a commercial digital versatile gold disc by a drop casting method. The electrochemical properties of the modified electrode were investigated by cyclic voltammetry and differential pulse voltammetry. The sensor showed an excellent electrocatalytic activity towards oxidation of paracetamol (PA). The calibration plot (with current typically measured at 0.41 V vs. Ag/AgCl) is linear in the 0.5 to 80 μM concentration range, and the detection limit is as low as 10 nM. The sensor was successfully applied to the determination of PA in spiked water and tablet samples where it gave recoveries ranging between 95.25 and 100.5 %.

Carbon nanotubes (CNT) -copper nanoparticles (CuNPs) hybrid composite was synthesized by a facile method then the nanohybrid was used as a modifier for the DVD gold electrode for improving its performance toward paracetamol electrooxidation. Cyclic voltammetry and differential pulse voltammetry were used for characterization and determination of paracetamol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S (2006) Paracetamol: new vistas of an old drug. CNS Drug Reviews 12:250–275

    Article  CAS  Google Scholar 

  2. Chu Q, Jiang L, Tian X, Ye J (2008) Rapid determination of acetaminophen and p-aminophenol in pharmaceutical formulations using miniaturized capillary electrophoresis with amperometric detection. Anal Chim Acta 606:246–251

    Article  CAS  Google Scholar 

  3. Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, Reisch JS, Schiodt FV, Ostapowicz G, Shakil AO, Lee WM (2005) Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42:1364–1372

    Article  CAS  Google Scholar 

  4. Dong Y, Su M, Chen P, Sun H (2015) Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamol, L-cysteine and glutathione. Microchim Acta 182(5–6):1071–1077

    Article  CAS  Google Scholar 

  5. Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and Waste water environments. Anal. Bioanal. Chem 387:1225–1234

    Article  CAS  Google Scholar 

  6. Abirami G, Vetrichelvan T (2013) Simultaneous determination of Tolperisone and Paracetamol in pure and fixed dose combination by UV-Spectrophotometry. Inter. J. Pharm. Pharm Sci 5:488–492

    CAS  Google Scholar 

  7. Azodi-Deilami S, Najafabadi A, Hassani AE, Abdouss M, Kordestani D (2014) Magnetic molecularly imprinted polymer nanoparticles for the solid-phase extraction of paracetamol from plasma samples, followed its determination by HPLC. Microchimica Acta 181(15–16):1823–1832

    Article  CAS  Google Scholar 

  8. Sultan MA, Maher HM, Alzoman NZ, Alshehri MM, Rizk MS, Elshahed MS, Olah LV (2013) Capillary electrophoretic determination of antimigraine formulations containing caffeine, ergotamine, paracetamol and domperidone or metoclopramide. J. Chromatogr. Sci 51:502–510

    Article  CAS  Google Scholar 

  9. D’Souza OJ, Mascarenhas RJ, Thomas T, Basavaraja BM, Saxena AK, Mukhopadhyay K, Roy D (2015) Platinum decorated multi-walled carbon nanotubes/triton X-100 modified carbon paste electrode for the sensitive amperometric determination of paracetamol. J Electroanal Chem 739:49–57

    Article  Google Scholar 

  10. Zhang Y, Luo L, Ding Y, Liu X, Qian Z (2010) Highly sensitive method for determination of paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchim Acta 171(1–2):133–138

    Article  CAS  Google Scholar 

  11. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  12. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  13. Jacobs CB, Peairs MJ, BJ V (2010) Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127

    Article  CAS  Google Scholar 

  14. Prakash S, Chakrabarty T, Singh AK, Shahi VK (2013) Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron 41:43–53

    Article  CAS  Google Scholar 

  15. Wojtysiak S, Solla-Gullón J, Dłu˙ zewski P, Kudelski A (2014) Synthesisofcore–shell silver–platinum nanoparticles, improvingshellintegrity. Colloids Surf. A: Physicochem. Eng. Asp 441:178–183

    Article  CAS  Google Scholar 

  16. Liu L, Xiao F, Li J, Wu W, Zhao F, Zeng B (2008) Platinum nanoparticles decorated multiwalled carbon nanotubes–ionic liquid composite film coated glassy carbon electrodes for sensitive determination of theophylline. Electroanalysis 20:1194–1199

    Article  CAS  Google Scholar 

  17. Zhao Y, Yang X, Tian J, Wang F, Zhan L (2010) Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. International journal of hydrogen energy 35:3249–3257

    Article  CAS  Google Scholar 

  18. Wang Y, Wei W, Zeng J, Liu X, Zeng X (2008) Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose. Microchim Acta 160(1–2):253–260

    Article  CAS  Google Scholar 

  19. Fu Y, Zhang L, Chen G (2012) Preparation of a carbon nanotube-copper nanoparticle hybrid by chemical reduction for use in the electrochemical sensing of carbohydrates. CARB ON 50:2563–2570

    Article  CAS  Google Scholar 

  20. Sawyer TD, Roberts JL (1974) Jr Experimental Electrochemistry for Chemists. John Willey & Sons, New York

    Google Scholar 

  21. Angnes L, Richter EM, Augelli MA, Kume GH (2000) Gold electrodes from record-able CDs. Anal. Chem 72:5503–5506

    Article  CAS  Google Scholar 

  22. Wenn Y, Lin AJ, Chen HF, Jiao YZ, Yang HF (2013) From DVD to dendritic nanostructure silver electrode for hydrogen peroxide detection. Biosens Bioelectron 41:857–861

    Article  Google Scholar 

  23. Shafei M, Honeychurch KC (2013) Voltammetric behavior of hydrogen peroxide at a silver electrode fabricated from a rewritable digital versatile disc (DVD) and its determination in water samples. Anal Methods 5:6631–6636

    Article  CAS  Google Scholar 

  24. Mawhinney DB, Naumenko V, Kuznetsova A, Yates JTJ, Liu J, Smalley RE (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384

    Article  CAS  Google Scholar 

  25. Bard AJ, Faulkner LR (2001) Electrochemical Methods. Fundamentals and Applications, Wiley, New York

    Google Scholar 

  26. Khaskhelia AR, Fischerb J, Barekb J, Vyskocil V, Sirajuddina BMI (2013) Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite–polystyrene composite film modified electrode. Electrochimica Acta 101:238–242

    Article  Google Scholar 

  27. Kanga X, Wanga J, Wua H, Liua J, Aksayc IA, Lina Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  Google Scholar 

  28. EL Bouabi Y, Farahi A, Labjar N, El Hajjaji S, Bakasse M, El Mhammedi MA (2015) Square wave voltammetric determination of paracetamol at chitosan modified carbon paste electrode: Application in natural water samples, commercial tablets and human urines. Materials Science & Engineering C 58:70–78

    Article  Google Scholar 

  29. Goyala RN, Guptaa VK, Chatterjeea S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensors Actuators B 149:252–258

    Article  Google Scholar 

  30. Yin H, Shang K, Meng X, Ai S (2011) Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide. Microchim Acta 175(1–2):39–46

    Article  CAS  Google Scholar 

  31. Luo J, Cong J, Fang R, Fei X, Liu X (2014) One-pot synthesis of a graphene oxide coated with an imprinted sol-gel for use in electrochemical sensing of paracetamol. Microchim Acta 181(11–12):1257–1266

    Article  CAS  Google Scholar 

  32. Liu X, Zhang X, Wang L, Wang Y (2014) A sensitive electrochemical sensor for paracetamol based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. Microchim Acta 181(11–12):1439–1446

    Article  CAS  Google Scholar 

  33. Liu R, Zeng X, Liu J, Luo J, Zheng Y, Liu X (2016) A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbonnanotubes for simultaneous determination of dopamine and paracetamol. Microchim Acta 183(5):1543–1551

    Article  CAS  Google Scholar 

  34. Airong M, Hongbo L, Dangqin J, Liangyun Y, Xiaoya H (2015) Fabrication of electrochemical sensor for paracetamol based on multi-walled carbon nanotubes and chitosan-copper complex by self assembly technique. Talanta 144:252–257

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of this research work by Ferdowsi University of Mashhad (Grant No. 2/38052) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Rounaghi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic Supplementary Materials

ESM 1

(DOCX 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshvar, L., Rounaghi, G.H. & Tarahomi, S. Voltammetric paracetamol sensor using a gold electrode made from a digital versatile disc chip and modified with a hybrid material consisting of carbon nanotubes and copper nanoparticles. Microchim Acta 183, 3001–3007 (2016). https://doi.org/10.1007/s00604-016-1950-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1950-0

Keywords

Navigation