Skip to main content
Log in

Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a non-enzymatic amperometric sensor for glucose that was prepared by electrodeposition of cobalt oxide nanoparticles on a graphene paste that is readily obtained by mixing reduced graphene oxide (r-GO) nanosheets and mineral oil in a mortar. An electrode was prepared and characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Cobalt oxide nanoparticles were electrochemically deposited on the electrode, and their morphology was characterized by field emission scanning electron microscopy. Cyclic voltammetric and chronoamperometric studies showed the modified electrode to display electrocatalytic activity toward the direct oxidation of glucose, best at a working potential of 0.45 V (vs. SCE) in 0.1 M NaOH solution. The sensor exhibits a linear response in the 40 to 4000 μM glucose concentration range, has a detection limit as low as 1.4 μM (at an S/N ratio of 3), and a sensitivity of 1.21 μA∙μM−1∙cm−2. The electrode was successfully applied to the determination of glucose in (spiked) human serum where it showed recoveries between 97.2 and 103.4 %.

A non-enzymatic amperometric sensor for determination of glucose level in serum samples was prepared by electrodeposition of cobalt oxide nanoparticles on a graphene paste electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825. doi:10.1021/cr068123a

    Article  CAS  Google Scholar 

  2. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2012) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180(3):161–186. doi:10.1007/s00604-012-0923-1

    Google Scholar 

  3. Harms D, Meyer J, Westerheide L, Krebs B, Karst U (1999) Determination of glucose in soft drinks using its enzymatic oxidation and the detection of formed hydrogen peroxide with a dinuclear iron(III) complex. Anal Chim Acta 401(1–2):83–90. doi:10.1016/S0003-2670(99)00514-0

    Article  CAS  Google Scholar 

  4. Ci S, Huang T, Wen Z, Cui S, Mao S, Steeber DA, Chen J (2014) Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosensors Bioelectron 54(0):251–257. doi:10.1016/j.bios.2013.11.006

    Article  CAS  Google Scholar 

  5. Yu H, Jin J, Jian X, Wang Y, G-c Q (2013) Preparation of cobalt oxide nanoclusters/overoxidized polypyrrole composite film modified electrode and its application in nonenzymatic glucose sensing. Eectroanal 25(7):1665–1674. doi:10.1002/elan.201300035

    Article  CAS  Google Scholar 

  6. Wang L, Lu X, Ye Y, Sun L, Song Y (2013) Nickel-cobalt nanostructures coated reduced graphene oxide nanocomposite electrode for nonenzymatic glucose biosensing. Electrochim Acta 114:484–493. doi:10.1016/j.electacta.2013.10.125

    Article  CAS  Google Scholar 

  7. Chen X, Wu G, Cai Z, Oyama M, Chen X (2013) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181(7):689–705. doi:10.1007/s00604-013-1098-0

    Google Scholar 

  8. Zhou X, Zheng X, Lv R, Kong D, Li Q (2013) Electrodeposition of platinum on poly(glutamic acid) modified glassy carbon electrode for non-enzymatic amperometric glucose detection. Electrochim Acta 107:164–169. doi:10.1016/j.electacta.2013.05.146

    Article  CAS  Google Scholar 

  9. Chen X, Tian X, Zhao L, Huang Z, Oyama M (2013) Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes. Microchim Acta 181(7):783–789. doi:10.1007/s00604-013-1142-0

    Google Scholar 

  10. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors Bioelectron 26(2):542–548. doi:10.1016/j.bios.2010.07.050

    Article  CAS  Google Scholar 

  11. Karuppiah C, Palanisamy S, Chen S-M, Veeramani V, Periakaruppan P (2014) A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sensors Actuators B Chem 196(0):450–456. doi:10.1016/j.snb.2014.02.034

    Article  CAS  Google Scholar 

  12. Zhong A, Luo X, Chen L, Wei S, Liang Y, Li X (2014) Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchim Acta 182(5):1197–1204. doi:10.1007/s00604-014-1443-y

    Google Scholar 

  13. Dhara K, Thiagarajan R, Nair BG, Thekkedath GSB (2015) Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Microchim Acta 182(13):2183–2192. doi:10.1007/s00604-015-1549-x

    Article  CAS  Google Scholar 

  14. Khan SB, Karimov KS, Chani MTS, Asiri AM, Akhtar K, Fatima N (2015) Impedimetric sensing of humidity and temperature using CeO2–Co3O4 nanoparticles in polymer hosts. Microchim Acta 182(11):2019–2026. doi:10.1007/s00604-015-1529-1

    Article  CAS  Google Scholar 

  15. Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252(20):7487–7492. doi:10.1016/j.apsusc.2005.09.004

    Article  CAS  Google Scholar 

  16. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  17. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18):185504

    Article  Google Scholar 

  18. Gutierrez F, Comba FN, Gasnier A, Gutierrez A, Galicia L, Parrado C, Rubianes MD, Rivas GA (2014) Graphene paste electrode: analytical applications for the quantification of dopamine, phenolic compounds and ethanol. Eectroanal 26(8):1694–1701. doi:10.1002/elan.201400247

    Article  CAS  Google Scholar 

  19. Parvin MH (2011) Graphene paste electrode for detection of chlorpromazine. Electrochem Commun 13(4):366–369. doi:10.1016/j.elecom.2011.01.027

    Article  CAS  Google Scholar 

  20. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  21. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778. doi:10.1021/cm981085u

    Article  CAS  Google Scholar 

  22. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  23. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13(2):133–137. doi:10.1016/j.elecom.2010.11.033

    Article  CAS  Google Scholar 

  24. Barbero C, Planes GA, Miras MC (2001) Redox coupled ion exchange in cobalt oxide films. Electrochem Commun 3(3):113–116. doi:10.1016/S1388-2481(01)00107-2

    Article  CAS  Google Scholar 

  25. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101(1):19–28. doi:10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  26. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  27. Yang J, Zhang W-d, Gunasekaran S (2011) A low-potential, H2O2-assisted electrodeposition of cobalt oxide/hydroxide nanostructures onto vertically-aligned multi-walled carbon nanotube arrays for glucose sensing. Electrochim Acta 56(16):5538–5544. doi:10.1016/j.electacta.2011.03.087

    Article  CAS  Google Scholar 

  28. Buratti S, Brunetti B, Mannino S (2008) Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta 76(2):454–457. doi:10.1016/j.talanta.2008.03.031

    Article  CAS  Google Scholar 

  29. Li S-J, Du J-M, Chen J, Mao N-N, Zhang M-J, Pang H (2013) Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two-dimensional hybrid for enzyme-free glucose sensing. J Solid State Electrochem 18(4):1049–1056. doi:10.1007/s10008-013-2354-2

    Article  Google Scholar 

  30. Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213. doi:10.1021/nn300097q

    Article  CAS  Google Scholar 

  31. Wang X, Dong X, Wen Y, Li C, Xiong Q, Chen P (2012) A graphene-cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. Chem Commun 48(52):6490–6492. doi:10.1039/C2CC32674D

    Article  CAS  Google Scholar 

  32. Meng F, Shi W, Sun Y, Zhu X, Wu G, Ruan C, Liu X, Ge D (2013) Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detectionrange. Biosensors Bioelectron 42:141–147. doi:10.1016/j.bios.2012.10.051

    Article  CAS  Google Scholar 

  33. Nayak P, Nair SP, Ramaprabhu S (2015) Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes. Microchimica Acta: 1–8. doi:10.1007/s00604-015-1729-8

  34. Mei H, Wu W, Yu B, Li Y, Wu H, Wang S, Xia Q (2015) Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co@Pt core-shell nanoparticles. Microchim Acta 182(11):1869–1875. doi:10.1007/s00604-015-1524-6

    Article  CAS  Google Scholar 

  35. Roh S, Kim J (2014) Electrodeposition of three-dimensionally assembled platinum spheres on a gold-coated silicon wafer, and its application to nonenzymatic sensing of glucose. Microchim Acta 182(3):849–854. doi:10.1007/s00604-014-1397-0

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the research council of Azarbaijan Shahid Madani University for financial support (Project No. 217/d/12045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Heidari.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, H., Habibi, E. Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles. Microchim Acta 183, 2259–2266 (2016). https://doi.org/10.1007/s00604-016-1862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1862-z

Keywords

Navigation