Skip to main content
Log in

Nanopore-enabled electrode arrays and ensembles

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 116 refs.) addresses recent developments in nanoelectrode arrays and ensembles with particular attention to nanopore-enabled arrays and ensembles. Nanoelectrode-based arrays exhibit unique mass transport and ion transfer properties, which can be exploited for electroanalytical measurements with enhanced figures-of-merit with respect to microscale and larger components. Following an introduction into the topic, we cover (a) methods for fabrication of solid-state nanopore electrodes, (b) chemical and biochemical sensors, (c) nanochannel arrays with embedded nanoelectrodes; (d) recessed nanodisk electrode arrays; (e) redox cycling in nanopore electrode arrays, (f) finally discuss novel nanoarrays for electrochemistry, and then give a future outlook. A wide variety of nanoelectrode array-based chemical and biochemical sensors properties are discussed in addition to faradaic, ion transfer and spectroelectrochemical applications.

This review addresses recent developments in nanoelectrode arrays and ensembles with particular attention to nanopore-enabled arrays and ensembles. A wide variety of nanoelectrode array-based chemical and biochemical sensors properties are discussed in addition to faradaic, ion transfer and spectroelectrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu CY, Gillette EI, Chen XY, Pearse AJ, Kozen AC, Schroeder MA, Gregorczyk KE, Lee SB, Rubloff GW (2014) An all-in-one nanopore battery array. Nat Nanotechnol 9(12):1031–1039

    Article  CAS  Google Scholar 

  2. Hees J, Hoffmann R, Kriele A, Smirnov W, Obloh H, Glorer K, Raynor B, Driad R, Yang NJ, Williams OA, Nebel CE (2011) Nanocrystalline diamond nanoelectrode arrays and ensembles. ACS Nano 5(4):3339–3346

    Article  CAS  Google Scholar 

  3. Dawson K, O'Riordan A (2014) Electroanalysis at the nanoscale. Annu Rev Anal Chem 7:163–181

    Article  CAS  Google Scholar 

  4. Wahl A, Barry S, Dawson K, MacHale J, Quinn AJ, O'Riordan A (2014) Electroanalysis at ultramicro and nanoscale electrodes: a comparative study. J Electrochem Soc 161(2):B3055–B3060

    Article  CAS  Google Scholar 

  5. Oja SM, Wood M, Zhang B (2013) Nanoscale electrochemistry. Anal Chem 85(2):473–486

    Article  CAS  Google Scholar 

  6. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108(7):2688–2720

    Article  CAS  Google Scholar 

  7. Arrigan DWM (2004) Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129(12):1157–1165

    Article  CAS  Google Scholar 

  8. LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108(2):614–637

    Article  CAS  Google Scholar 

  9. Li T, Hu WP (2011) Electrochemistry in nanoscopic volumes. Nanoscale 3(1):166–176

    Article  CAS  Google Scholar 

  10. Bae JH, Han JH, Chung TD (2012) Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Phys Chem Chem Phys 14(2):448–463

    Article  CAS  Google Scholar 

  11. Xiao X, Roberts ME, Wheeler DR, Washburn CM, Edwards TL, Brozik SM, Montano GA, Bunker BC, Burckel DB, Polsky K (2010) Increased mass transport at lithographically defined 3-D porous carbon electrodes. ACS Appl Mater Inter 11:3179–3184

    Article  CAS  Google Scholar 

  12. Ueno K, Hayashida M, Ye JY, Misawa H (2005) Fabrication and electrochemical characterization of interdigitated nanoelectrode arrays. Electrochem Commun 7(2):161–165

    Article  CAS  Google Scholar 

  13. Schmueser I, Walton AJ, Terry JG, Woodvine HL, Freeman NJ, Mount AR (2013) A systematic study of the influence of nanoelectrode dimensions on electrode performance and the implications for electroanalysis and sensing. Faraday Discuss 164:295–314

    Article  CAS  Google Scholar 

  14. Rauf S, Shiddiky MJA, Asthana A, Dimitrov K (2012) Fabrication and characterization of gold nanohole electrode arrays. Sensors Actuators B Chem 173:491–496

    Article  CAS  Google Scholar 

  15. Moretto LM, Tormen M, Carpentiero A, Ugo P (2010) Arrays of nanoelectrodes. Critical evaluation of geometrical and diffusion characteristics with respect to electroanalytical applications. ECS Trans 25(28):33–38

    Article  CAS  Google Scholar 

  16. Molina A, Laborda E, Gonzalez J, Compton RG (2013) Effects of convergent diffusion and charge transfer kinetics on the diffusion layer thickness of spherical micro- and nanoelectrodes. Phys Chem Chem Phys 15(19):7106–7113

    Article  CAS  Google Scholar 

  17. Godino N, Borrise X, Munoz FX, del Campo FJ, Compton RG (2009) Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J Phys Chem C 113(25):11119–11125

    Article  CAS  Google Scholar 

  18. Henstridge MC, Compton RG (2012) Mass transport to micro- and nanoelectrodes and their arrays: a review. Chem Rec 12(1):63–71

    Article  CAS  Google Scholar 

  19. Freeman NJ, Sultana R, Reza N, Woodvine H, Terry JG, Walton AJ, Brady CL, Schmueser I, Mount AR (2013) Comparison of the performance of an array of nanoband electrodes with a macro electrode with similar overall area. Phys Chem Chem Phys 15(21):8112–8118

    Article  CAS  Google Scholar 

  20. Lanyon YH, De Marzi G, Watson YE, Quinn AJ, Gleeson JP, Redmond G, Arrigan DWM (2007) Fabrication of nanopore array electrodes by focused ion beam milling. Anal Chem 79(8):3048–3055

    Article  CAS  Google Scholar 

  21. Lanyon YH, Arrigan DWM (2007) Recessed nanoband electrodes fabricated by focused ion beam milling. Sensors Actuators B Chem 121(1):341–347

    Article  CAS  Google Scholar 

  22. Triroj N, Jaroenapibal P, Beresford R (2013) Gas-assisted focused ion beam fabrication of gold nanoelectrode arrays in electron-beam evaporated alumina films for microfluidic electrochemical sensors. Sensors Actuators B Chem 187:455–460

    Article  CAS  Google Scholar 

  23. Lillo M, Losic D (2009) Ion-beam pore opening of porous anodic alumina: the formation of single nanopore and nanopore arrays. Mater Lett 63(3–4):457–460

    Article  CAS  Google Scholar 

  24. Errachid A, Mills CA, Pla-Roca M, Lopez MJ, Villanueva G, Bausells J, Crespo E, Teixidor F, Samitier J (2008) Focused ion beam production of nanoelectrode arrays. Mat Sci Eng C-Bio S 28(5–6):777–780

    Article  CAS  Google Scholar 

  25. Sandison ME, Cooper JM (2006) Nanofabrication of electrode arrays by electron-beam and nanoimprint lithographies. Lab Chip 6(8):1020–1025

    Article  CAS  Google Scholar 

  26. Ma CX, Contento NM, Gibson LR, Bohn PW (2013) Redox cycling in nanoscale-recessed ring-disk electrode arrays for enhanced electrochemical sensitivity. ACS Nano 7(6):5483–5490

    Article  CAS  Google Scholar 

  27. Wong TI, Han S, Wu L, Wang Y, Deng J, Tan CYL, Bai P, Loke YC, Yang XD, Tse MS, Ng SH, Zhou XD (2013) High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers. Lab Chip 13(12):2405–2413

    Article  CAS  Google Scholar 

  28. Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67(13):1920–1928

    Article  CAS  Google Scholar 

  29. Hulteen JC, Martin CR (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7(7):1075–1087

    Article  CAS  Google Scholar 

  30. Brumlik CJ, Martin CR, Tokuda K (1992) Microhole array electrodes based on microporous alumina membranes. Anal Chem 64(10):1201–1203

    Article  CAS  Google Scholar 

  31. Penner RM, Martin CR (1987) Preparation and electrochemical characterization of ultramicroelectrode ensembles. Anal Chem 59(21):2625–2630

    Article  CAS  Google Scholar 

  32. Valsesia A, Lisboa P, Colpo P, Rossi F (2006) Fabrication of polypyrrole-based nanoelectrode arrays by colloidal lithography. Anal Chem 78(21):7588–7591

    Article  CAS  Google Scholar 

  33. Bai JW, Wang DQ, Nam SW, Peng HB, Bruce R, Gignac L, Brink M, Kratschmer E, Rossnagel S, Waggonerl P, Reuter K, Wang C, Astier Y, Balagurusamy V, Luan BQ, Kwark Y, Joseph E, Guillorn M, Polonsky S, Royyuru A, Rao SP, Stolovitzky G (2014) Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales. Nanoscale 6(15):8900–8906

    Article  CAS  Google Scholar 

  34. Gholizadeh A, Shahrokhian S, Zad AI, Mohajerzadeh S, Vosoughi M, Darbari S, Koohsorkhi J, Mehran M (2012) Fabrication of sensitive glutamate biosensor based on vertically aligned CNT nanoelectrode array and investigating the effect of CNTs density on the electrode performance. Anal Chem 84(14):5932–5938

    Article  CAS  Google Scholar 

  35. Zhang XJ, Wang J, Ogorevc B, Spichiger UE (1999) Glucose nanosensor based on prussian-blue modified carbon-fiber cone nanoelectrode and an integrated reference electrode. Electroanal 11(13):945–949

    Article  CAS  Google Scholar 

  36. Yu JC, Zhang YJ, Liu SQ (2014) Enzymatic reactivity of glucose oxidase confined in nanochannels. Biosens Bioelectron 55:307–312

    Article  CAS  Google Scholar 

  37. Dawson K, Baudequin M, O'Riordan A (2011) Single on-chip gold nanowires for electrochemical biosensing of glucose. Analyst 136(21):4507–4513

    Article  CAS  Google Scholar 

  38. Claussen JC, Wickner MM, Fisher TS, Porterfield DM (2011) Transforming the fabrication and biofunctionalization of gold nanoelectrode arrays into versatile electrochemical glucose biosensors. Acs Appl Mater Inter 3(5):1765–1770

    Article  CAS  Google Scholar 

  39. Lupu A, Lisboa P, Valsesia A, Colpo P, Rossi F (2009) Hydrogen peroxide detection nanosensor array for biosensor development. Sensors Actuators B Chem 137(1):56–61

    Article  CAS  Google Scholar 

  40. Karyakin AA, Puganova EA, Budashov IA, Kurochkin IN, Karyakina EE, Levchenko VA, Matveyenko VN, Varfolomeyev SD (2004) Prussian blue based nanoelectrode arrays for H2O2 detection. Anal Chem 76(2):474–478

    Article  CAS  Google Scholar 

  41. Sultana R, Reza N, Kay NJ, Schmueser I, Walton AJ, Terry JG, Mount AR, Freeman NJ (2014) Practical implications of using nanoelectrodes for bioanalytical measurements. Electrochim Acta 126:98–103

    Article  CAS  Google Scholar 

  42. Liu JP, Guo CX, Li CM, Li YY, Chi QB, Huang XT, Liao L, Yu T (2009) Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem Commun 11(1):202–205

    Article  CAS  Google Scholar 

  43. Wang YL, Zhu YC, Zeng Y (2012) Amperometric biosensor based on 3D ordered freestanding porous Pt nanowire array electrode. Nanoscale 4(19):6025–6031

    Article  CAS  Google Scholar 

  44. Triroj N, Jaroenapibal P, Shi HB, Yeh JI, Beresford R (2011) Microfluidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosens Bioelectron 26(6):2927–2933

    Article  CAS  Google Scholar 

  45. Koehne JE, Marsh M, Boakye A, Douglas B, Kim IY, Chang SY, Jang DP, Bennet KE, Kimble C, Andrews R, Meyyappan M, Lee KH (2011) Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry. Analyst 136(9):1802–1805

    Article  CAS  Google Scholar 

  46. Jung HS, Kim JM, Park JW, Lee HY, Kawai T (2005) Amperometric immunosensor for direct detection based upon functional lipid vesicles immobilized on nanowell array electrode. Langmuir 21(13):6025–6029

    Article  CAS  Google Scholar 

  47. Lu JS, Li HN, Cui DM, Zhang YJ, Liu SQ (2014) Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO2 nanotube arrays. Anal Chem 86(15):8003–8009

    Article  CAS  Google Scholar 

  48. Swisher LZ, Syed LU, Prior AM, Madiyar FR, Carlson KR, Nguyen TA, Hua DH, Li J (2013) Electrochemical protease biosensor based on enhanced AC voltammetry using carbon nanofiber nanoelectrode arrays. J Phys Chem C 117(8):4268–4277

    Article  CAS  Google Scholar 

  49. Koehne J, Li J, Cassell AM, Chen H, Ye Q, Ng HT, Han J, Meyyappan M (2004) The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. J Mater Chem 14(4):676–684

    Article  CAS  Google Scholar 

  50. Koehne J, Li J, Chen H, Cassell A, Ng HT, Fan W, Li Q, Han J, Mayyappan M (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3(5):597–602

    Article  CAS  Google Scholar 

  51. Li SJ, Li J, Wang K, Wang C, Xu JJ, Chen HY, Xia XH, Huo Q (2010) A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. ACS Nano 4(11):6417–6424

    Article  CAS  Google Scholar 

  52. Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE (2013) Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal Chem 85(8):3858–3863

    Article  CAS  Google Scholar 

  53. Zhuo L, Huang Y, Cheng MS, Lee HK, Toh CS (2010) Nanoarray membrane sensor based on a multilayer design for sensing of water pollutants. Anal Chem 82(11):4329–4332

    Article  CAS  Google Scholar 

  54. Liu GD, Lin YH, Tu Y, Ren ZF (2005) Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. Analyst 130(7):1098–1101

    Article  CAS  Google Scholar 

  55. Branagan SP, Contento NM, Bohn PW (2012) Enhanced mass transport of electroactive species to annular nanoband electrodes embedded in nanocapillary array membranes. J Am Chem Soc 134(20):8617–8624

    Article  CAS  Google Scholar 

  56. Gibson LR, Branagan SP, Bohn PW (2013) Convective delivery of electroactive species to annular nanoband electrodes embedded in nanocapillary-array membranes. Small 9(1):90–97

    Article  CAS  Google Scholar 

  57. Zaino LP, Contento NM, Branagan SP, Bohn PW (2014) Coupled electrokinetic transport and electron transfer at annular nanoband electrodes embedded in cylindrical nanopores. ChemElectroChem 1(9):1570–1576

    Article  CAS  Google Scholar 

  58. Contento NM, Branagan SP, Bohn PW (2011) Electrolysis in nanochannels for in situ reagent generation in confined geometries. Lab Chip 11(21):3634–3641

    Article  CAS  Google Scholar 

  59. Perera DMNT, Pandey B, Ito T (2011) Electrochemical impedance spectroscopy studies of organic-solvent-induced permeability changes in nanoporous films derived from a cylinder-forming diblock copolymer. Langmuir 27(17):11111–11117

    Article  CAS  Google Scholar 

  60. Li YX, Maire HC, Ito T (2007) Electrochemical characterization of nanoporous films fabricated from a polystyrene-poly(methylmethacrylate) diblock copolymer: monitoring the removal of the PMMA domains and exploring the functional groups on the nanopore surface. Langmuir 23(25):12771–12776

    Article  CAS  Google Scholar 

  61. Li YX, Ito T (2009) Size-exclusion properties of nanoporous films derived from polystyrene-poly(methylmethacrylate) diblock copolymers assessed using direct electrochemistry of ferritin. Anal Chem 81(2):851–855

    Article  CAS  Google Scholar 

  62. Li CY, Tian YW, Shao WT, Yuan CG, Wang K, Xia XH (2014) Solution pH regulating mass transport in highly ordered nanopore array electrode. Electrochem Commun 42:1–5

    Article  CAS  Google Scholar 

  63. Kim S, Polycarpou AA, Liang H (2014) Enhanced-ion transfer via metallic-nanopore electrodes. J Electrochem Soc 161(10):A1475–A1479

    Article  CAS  Google Scholar 

  64. Ito T, Audi AA, Dible GP (2006) Electrochemical characterization of recessed nanodisk-array electrodes prepared from track-etched membranes. Anal Chem 78(19):7048–7053

    Article  CAS  Google Scholar 

  65. Perera DMNT, Ito T (2010) Cyclic voltammetry on recessed nanodisk-array electrodes prepared from track-etched polycarbonate membranes with 10-nm diameter pores. Analyst 135(1):172–176

    Article  CAS  Google Scholar 

  66. Jeoung E, Galow TH, Schotter J, Bal M, Ursache A, Tuominen MT, Stafford CM, Russell TP, Rotello VM (2001) Fabrication and characterization of nanoelectrode arrays formed via block copolymer self-assembly. Langmuir 17(21):6396–6398

    Article  CAS  Google Scholar 

  67. Tokuda K, Morita K, Shimizu Y (1989) Cyclic voltammetry at microhole array electrodes. Anal Chem 61(15):1763–1768

    Article  CAS  Google Scholar 

  68. Bond AM, Luscombe D, Oldham KB, Zoski CG (1988) A comparison of the chronoamperometric response at inlaid and recessed disk microelectrodes. J Electroanal Chem Interfacial Electrochem 249(1–2):1–14

    Article  CAS  Google Scholar 

  69. Yu JC, Luo PC, Xin CX, Cao XD, Zhang YJ, Liu SQ (2014) Quantitative evaluation of biological reaction kinetics in confined nanospaces. Anal Chem 86(16):8129–8135

    Article  CAS  Google Scholar 

  70. Shibata Y, Morita M (1989) Exchange of comments on identification and quantitation of arsenic species in a dogfish muscle reference material for trace-elements. Anal Chem 61(18):2116–2118

    Article  CAS  Google Scholar 

  71. Chow K-F, Mavre F, Crooks JA, Chang B-Y, Crooks RM (2009) A large-scale, wireless electrochemical bipolar electrode microarray. J Am Chem Soc 131(24):8364–8365

    Article  CAS  Google Scholar 

  72. Mavre F, Anand RK, Laws DR, Chow K-F, Chang B-Y, Crooks JA, Crooks RM (2010) Snapshot voltammetry using a triangular bipolar microelectrode. Anal Chem 82(12):8766–8774

    Article  CAS  Google Scholar 

  73. Zaino LP, Grismer DA, Han D, Crouch GM, Bohn PW (2015) Single occupancy spectroelectrochemistry of freely diffusing flavin mononucleotide in zero-dimensional nanophotonic structures. Faraday Discuss. doi:10.1039/C5FD00072F

    Google Scholar 

  74. Niwa O, Tabei H (1994) Voltammetric measurements of reversible and quasi-reversible redox species using carbon film based interdigitated array microelectrodes. Anal Chem 66(2):285–289

    Article  CAS  Google Scholar 

  75. Hayashi K, Takahashi J, Horiuchi T, Iwasaki Y, Haga T (2008) Development of nanoscale interdigitated array electrode as electrochemical sensor platform for highly sensitive detection of biomolecules. J Electrochem Soc 155(9):J240–J243

    Article  CAS  Google Scholar 

  76. Goluch ED, Wolfrum B, Singh PS, Zevenbergen MAG, Lemay SG (2009) Redox cycling in nanofluidic channels using interdigitated electrodes. Anal Bioanal Chem 394(2):447–456

    Article  CAS  Google Scholar 

  77. Rahimi M, Mikkelsen SR (2011) Cyclic biamperometry at micro-interdigitated electrodes. Anal Chem 83(19):7555–7559

    Article  CAS  Google Scholar 

  78. Fan F-RF, Bard AJ (1995) Electrochemical detection of single molecules. Science 267(5199):871–871

    Article  CAS  Google Scholar 

  79. Paixao TRLC, Richter EM, Brito-Neto JGA, Bertotti M (2006) Fabrication of a new generator-collector electrochemical microdevice: characterization and applications. Electrochem Commun 8:9–14

    Article  CAS  Google Scholar 

  80. Wolfrum B, Zevenbergen M, Lemay S (2008) Nanofluidic redox cycling amplification for the selective detection of catechol. Anal Chem 80:972–977

    Article  CAS  Google Scholar 

  81. Straver MG, Odijk M, Olthuis W, van den Berg A (2012) A simple method to fabricate electrochemical sensor systems with predictable high-redox cycling amplification. Lab Chip 12:1548–1553

    Article  CAS  Google Scholar 

  82. Aguilar ZP, Vandaveer WR, Fritsch I (2002) Self-contained microelectrochemical immunoassay for small volumes using mouse IgG as a model system. Anal Chem 74:3321–3329

    Article  CAS  Google Scholar 

  83. Vandaveer WR, Woodward DJ, Fritsch I (2003) Redox cycling measurements of a model compound and dopamine in ultrasmall volumes with a self-contained microcavity device. Electrochim Acta 48:3341–3348

    Article  CAS  Google Scholar 

  84. Neugebauer S, Mueller U, Lohmueller T, Spatz JP, Stelzle M, Schuhmann W (2006) Characterization of nanopore electrode structures as basis for amplified electrochemical assays. Electroanal 18:1929–1936

    Article  CAS  Google Scholar 

  85. Menshykau D, del Campo FJ, Munoz FX, Compton RG (2009) Current collection efficiency of micro- and nano-ring-recessed disk electrodes and of arrays of these electrodes. Sensors Actuators B B138:362–367

    Article  CAS  Google Scholar 

  86. Menshykau D, O'Mahony AM, del Campo FJ, Munoz FX, Compton RG (2009) Microarrays of ring-recessed disk electrodes in transient generator-collector mode: theory and experiment. Anal Chem 81:9372–9382

    Article  CAS  Google Scholar 

  87. Ma C, Contento NM, Gibson LR, Bohn PW (2013) Recessed ring-disk nanoelectrode arrays integrated in nanofluidic structures for selective electrochemical detection. Anal Chem 85(20):9882–9888

    Article  CAS  Google Scholar 

  88. Ma CX, Contento NM, Bohn PW (2014) Redox cycling on recessed ring-disk nanoelectrode arrays in the absence of supporting electrolyte. J Am Chem Soc 136(20):7225–7228

    Article  CAS  Google Scholar 

  89. Zhu F, Yan J-W, Lu M, Zhou Y-L, Yang Y, Mao B-W (2011) A strategy for selective detection based on interferent depleting and redox cycling using the plane-recessed microdisk array electrodes. Electrochim Acta 56:8101–8107

    Article  CAS  Google Scholar 

  90. Hüske M, Stockmann R, Offenhäusser A, Wolfrum B (2014) Redox cycling in nanoporous electrochemical devices. Nanoscale 6(1):589–598

    Article  Google Scholar 

  91. Zevenbergen MAG, Wolfrum BL, Goluch ED, Singh PS, Lemay SG (2009) Fast electron-transfer kinetics probed in nanofluidic channels. J Am Chem Soc 131:11471–11477

    Article  CAS  Google Scholar 

  92. Sun P, Mirkin MV (2008) Electrochemistry of individual molecules in zeptoliter volumes. J Am Chem Soc 130(26):8241–8250

    Article  CAS  Google Scholar 

  93. Henry CS, Fritsch I (1999) Microcavities containing individually addressable recessed microdisk and tubular nanoband electrodes. J Electrochem Soc 146(9):3367–3373

    Article  CAS  Google Scholar 

  94. Ma CX, Zaino LP, Bohn PW (2015) Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes. Chem Sci 6(5):3173–3179

    Article  CAS  Google Scholar 

  95. Zhu F, Yan J, Pang S, Zhou Y, Mao B, Oleinick A, Svir I, Amatore C (2014) Strategy for increasing the electrode density of microelectrode arrays by utilizing bipolar behavior of a metallic film. Anal Chem 86(6):3138–3145

    Article  CAS  Google Scholar 

  96. Dam VAT, Olthuis W, van den Berg A (2007) Redox cycling with facing interdigitated array electrodes as a method for selective detection of redox species. Analyst 132:365–370

    Article  CAS  Google Scholar 

  97. Schoch RB, Renaud P (2005) Ion transport through nanoslits dominated by the effective surface charge. Appl Phys Lett 86(25):253111

    Article  CAS  Google Scholar 

  98. Watkins JJ, White HS (2004) The role of the electrical double layer and ion pairing on the electrochemical oxidation of hexachloroiridate(III) at Pt electrodes of nanometer dimensions. Langmuir 20:5474–5483

    Article  CAS  Google Scholar 

  99. Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93(3):035901

    Article  CAS  Google Scholar 

  100. Myers D (1999) Surfaces, interfaces, and colloids. Wiley-Vch New York

  101. Horiuchi T, Niwa O, Morita M, Tabei H (1991) Limiting current enhancement by self-induced redox cycling on a micro-macro twin electrode. J Electrochem Soc 138:3549–3553

    Article  CAS  Google Scholar 

  102. Horiuchi T, Niwa O, Morita M, Tabei H (1992) Stripping voltammetry of reversible redox species by self-induced redox cycling. Anal Chem 64:3206–3208

    Article  CAS  Google Scholar 

  103. Tabei H, Horiuchi T, Niwa O, Morita M (1992) Highly sensitive detection of reversible species by self-induced redox cycling. J Electroanal Chem 326:339–343

    Article  CAS  Google Scholar 

  104. Horiuchi T, Niwa O, Tabei H (1994) Detection of reversible redox species by substitutional stripping voltammetry. Anal Chem 66:1224–1230

    Article  CAS  Google Scholar 

  105. Morita M, Niwa O, Horiuchi T (1997) Interdigitated array microelectrodes as electrochemical sensors. Electrochim Acta 42:3177–3183

    Article  CAS  Google Scholar 

  106. Oleinick A, Zhu F, Yan J, Mao B, Svir I, Amatore C (2013) Theoretical investigation of generator-collector microwell arrays for improving electroanalytical selectivity: application to selective dopamine detection in the presence of ascorbic acid. ChemPhysChem 14:1887–1898

    Article  CAS  Google Scholar 

  107. Zhao J, Zaino LP, Bohn PW (2013) Potential-dependent single molecule blinking dynamics for flavin adenine dinucleotide covalently immobilized in zero-mode waveguide array of working electrodes. Faraday Discuss 164:57–69

    Article  CAS  Google Scholar 

  108. Scanlon MD, Strutwolf J, Blake A, Iacopino D, Quinn AJ, Arrigan DWM (2010) Ion-transfer electrochemistry at arrays of nanointerfaces between immiscible electrolyte solutions confined within silicon nitride nanopore membranes. Anal Chem 82(14):6115–6123

    Article  CAS  Google Scholar 

  109. Sairi M, Strutwolf J, Mitchell RA, Silvester DS, Arrigan DWM (2013) Chronoamperometric response at nanoscale liquid-liquid interface arrays. Electrochim Acta 101:177–185

    Article  CAS  Google Scholar 

  110. Sairi M, Chen-Tan N, Neusser G, Kranz C, Arrigan DWM (2015) Electrochemical characterisation of nanoscale liquid jLiquid interfaces located at focused ion BeamMilled silicon nitride membranes. ChemElectroChem 2(1):98–105

    Article  CAS  Google Scholar 

  111. Liu Y, Strutwolf J, Arrigan DWM (2015) Ion-transfer voltammetric behavior of propranolol at nanoscale liquid-liquid interface arrays. Anal Chem 87(8):4487–4494

    Article  CAS  Google Scholar 

  112. Rimboud M, Hart RD, Becker T, Arrigan DWM (2011) Electrochemical behaviour and voltammetric sensitivity at arrays of nanoscale interfaces between immiscible liquids. Analyst 136(22):4674–4681

    Article  CAS  Google Scholar 

  113. Scanlon MD, Arrigan DWM (2011) Enhanced electroanalytical sensitivity via interface miniaturisation: ion transfer voltammetry at an array of nanometre liquid-Liquid Interfaces. Electroanal 23(4):1023–1028

    Article  CAS  Google Scholar 

  114. Liu Y, Sairi M, Neusser G, Kranz C, Arrigan DWM (2015) Achievement of diffusional independence at nanoscale liquid liquid interfaces within arrays. Anal Chem 87(11):5486–5490

    Article  CAS  Google Scholar 

  115. Saito Y (1968) A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev Polarogr 15(6):177–187

    Article  CAS  Google Scholar 

  116. Soos ZG, Lingane PJ (1964) Derivation of chronoamperometric constant for unshielded circular planar electrodes. J Phys Chem 68(12):3821–3828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work described herein that was carried out in the authors’ laboratories was supported by the National Science Foundation, most recently through grant 1404744 and by the Department of Energy Basic Energy Sciences through grant DE FG02 07ER15851. Fabrication and structural characterization of the devices studied here were accomplished at the Notre Dame Nanofabrication Facility and the Notre Dame Integrated Imaging Facility whose generous support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Bohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaino, L.P., Ma, C. & Bohn, P.W. Nanopore-enabled electrode arrays and ensembles. Microchim Acta 183, 1019–1032 (2016). https://doi.org/10.1007/s00604-015-1701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1701-7

Keywords

Navigation