Skip to main content
Log in

Screen-printed electrodes for environmental monitoring of heavy metal ions: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Heavy metals such as lead, mercury, cadmium, zinc and copper are among the most important pollutants because of their non-biodegradability and toxicity above certain thresholds. Here, we review methods for sensing heavy metal ions (HMI) in water samples using screen-printed electrodes (SPEs) as transducers. The review (with 107 refs.) starts with an introduction into the topic, and this is followed by sections on (a) mercury-coated SPEs, (b) bismuth-coated SPEs, (c) gold-coated SPEs (d) chemically modified and non-modified carbon SPEs, (e) enzyme inhibition-based SPEs, and (f) an overview of commercially available electrochemical portable heavy metal analyzers. The review reveals the significance of SPEs in terms of decentralized and of in situ analysis of heavy metal ions in environmental monitoring.

This review summarises recent advances in the use of screen-printed electrodes (SPEs) for the electrochemical detection of heavy metal ions in water samples. Research proofs of concept and commercially available portable equipments for ‘in situ analysis’ are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhan SF, Peng ST, Liu CG, Chang Q, Xu J (2010) Spatial and temporal variations of heavy metals in surface sediments in Bohai Bay, North China. Bull Environ Contam Toxicol 84:482–487. doi:10.1007/s00128-010-9971-6

    Article  CAS  Google Scholar 

  2. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. doi:10.1093/bmb/ldg032

    Article  Google Scholar 

  3. Brown B, Ahsanullah M (1971) Effect of heavy metals on mortality and growth. Mar Pollut Bull 2:182–187

    Article  CAS  Google Scholar 

  4. Jiang X, Teng A, Xu W, Liu X (2014) Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea. Mar Pollut Bull 83:366–375. doi:10.1016/j.marpolbul.2014.03.020

    Article  CAS  Google Scholar 

  5. Magni P, De Falco G, Falugi C, Franzoni M, Monteverde M, Perrone E, Sgro M, Bolognesi C (2006) Genotoxicity biomarkers and acetylcholinesterase activity in natural populations of Mytilus galloprovincialis along a pollution gradient in the Gulf of Oristano (Sardinia, western Mediterranean). Environ Pollut 142:65–72. doi:10.1016/j.envpol.2005.09.018

    Article  CAS  Google Scholar 

  6. Naser HA (2013) Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull 72:6–13. doi:10.1016/j.marpolbul.2013.04.030

    Article  CAS  Google Scholar 

  7. Underwood EJ (1974) Factors influencing trace element needs and tolerances in man. Mar Pollut Bull 5:86–88. doi:10.1016/0025-326X(74)90272-0

    Article  CAS  Google Scholar 

  8. Bryan GW (1971) The effects of heavy metals (other than mercury) on marine and estuarine organisms. Proc R Soc Lond B 177:389–410. doi:10.1098/rspb.1971.0037

    Article  CAS  Google Scholar 

  9. Johnston EL, Webb JA (2000) Novel techniques for field assessment of copper toxicity on fouling assemblages. Biofouling 15:165–173. doi:10.1080/08927010009386307

    Article  CAS  Google Scholar 

  10. Mills G, Fones G (2012) A review of in situ methods and sensors for monitoring the marine environment. Sens Rev 32:17–28. doi:10.1108/02602281211197116

    Article  Google Scholar 

  11. EPA (2003) Draft update of ambient water quality criteria for copper (CAS Registry Number 7440-50-8). U.S. Environmental Protection Agency, office of water office of science and technology, Washington DC

    Google Scholar 

  12. Sunda WG, Ferguson RL (1983) Sensitivity of natural bacterial communities to additions of copper and to cupric ion activity: a bioassay of copper complexation in seawater. In: Wong CS, Boyle EA, Bruland KW, Burton JD, Goldberg ED (eds) Trace metals in sea water. Plenum Press, New York, p 871

    Chapter  Google Scholar 

  13. Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, New York, p 45

    Google Scholar 

  14. Buffle J, Altman RS, Filella M, Tessier A (1990) Complexation by natural heterogeneous compounds. II. Site Occupation Distribution Functions, a normalized description of metal complexation. Geochim Cosmochim Acta 54:1535–1553. doi:10.1016/0016-7037(90)90389-3

    Article  CAS  Google Scholar 

  15. Kaika M (2003) The water framework directive: a new directive for a changing social, political and economic european framework. Eur Plan Stud 11(3):299–316. doi:10.1080/09654310303640

    Article  Google Scholar 

  16. Van Hoey G et al (2010) The use of benthic indicators in Europe: from the water framework directive to the marine strategy framework directive. Mar Pollut Bull 60:2187–2196. doi:10.1016/j.marpolbul.2010.09.015

    Article  Google Scholar 

  17. Rubio R, Huguet J, Rauret G (1984) Comparative study of the Cd. Cu and Pb determination by AAS and by ICP-AES in river water: Application to a Mediterranean river (Congost river, Catalonia, Spain). Water Res 18:423–428. doi:10.1016/0043-1354(84)90149-0

    Article  CAS  Google Scholar 

  18. Reddy MM, Benefiel MA, Claassen HC (1986) Cadmium, copper, lead, and zinc determination in precipitation: a comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry. Mikrochim Acta 88:159–170. doi:10.1007/BF01196608

    Article  Google Scholar 

  19. Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Microchim Acta 126:177–192. doi:10.1007/BF01242319

    Article  CAS  Google Scholar 

  20. Duinker JC, Kramer CJM (1977) An experimental study on the speciation of dissolved zinc, cadmium, lead and copper in River Rhine and North Sea water, by differential pulsed anodic-stripping voltammetry. Mar Chem 5:207–228. doi:10.1016/0304-4203(77)90017-2

    Article  CAS  Google Scholar 

  21. Gustavsson I, Hansson L (1984) Intercomparison studies of stripping voltammetry and atomic absorption spectrometry of Zn, Cd, Pb, Cu, Ni and Co in Baltic Sea water. Int J Environ Anal Chem 17:57–72. doi:10.1080/03067318408076968

  22. Süren E, Yilmaz S, Türkoglu M, Kaya S (2007) Concentrations of cadmium and lead in the Dardanelles seawater. Environ Monit Assess 125:91–98. doi:10.1007/s10661-006-9242-5

    Article  Google Scholar 

  23. Khoo SB, Guo SX (2002) Rapidly renewable and reproducible mercury film coated carbon paste electrode for anodic stripping voltammetry. Electroanalysis 14:813–822. doi:10.1002/1521-4109(200206)14:12<813::AID-ELAN813>3.0.CO;2-T

    Article  CAS  Google Scholar 

  24. Murimboh J, Lam MT, Hassan NM, Chakrabarti CL (2000) A study of nafion-coated and uncoated thin mercury film-rotating disk electrodes for Cd and Pb speciation in model solutions of fulvic acid. Anal Chim Acta 423:115–126. doi:10.1016/S0003-2670(00)01075-8

    Article  CAS  Google Scholar 

  25. Fischer E, Van Den Berg CMG (1999) Anodic stripping voltammetry of lead and cadmium using a mercury film electrode and thiocyanate. Anal Chim Acta 385:273–280. doi:10.1016/S0003-2670(98)00582-0

    Article  CAS  Google Scholar 

  26. Monterroso SCC, Carapuca HM, Simao JEJ, Duarte AC (2004) Optimisation of mercury film deposition on glassy carbon electrodes: evaluation of the combined effects of pH, thiocyanate ion and deposition potential. Anal Chim Acta 503:203–212. doi:10.1016/j.aca.2003.10.034

    Article  CAS  Google Scholar 

  27. Jagner D, Josefson M, Westerlund S (1981) Determination of zinc, cadmium, lead and copper in sea water by means of computerized potentiometric stripping analysis. Anal Chim Acta 129:153–161. doi:10.1016/S0003-2670(01)84128-3

    Article  CAS  Google Scholar 

  28. Carvalho LM, Nascimento PC, Koschinsky A, Bau M, Stefanello RF, Spengler C, Bohrer D, Jost C (2007) Simultaneous determination of cadmium, lead, copper, and thallium in highly saline samples by anodic stripping voltammetry (ASV) using mercury-film and bismuth-film electrodes. Electroanalysis 19:1719–1726. doi:10.1002/elan.200703922

    Article  Google Scholar 

  29. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181:865–891. doi:10.1007/s00604-014-1181-1

    Article  CAS  Google Scholar 

  30. Li M, Li Y-T, Li D-W, Long Y-T (2012) Recent developments and applications of screen-printed electrodes in environmental assays-A review. Anal Chim Acta 734:31–44. doi:10.1016/j.aca.2012.05.018

    Article  CAS  Google Scholar 

  31. Wang J, Tian BM (1992) Screen-printed stripping voltammetric/potentiometric electrode for decentralized testing of trace lead. Anal Chem 64:1706–1709. doi:10.1021/ac00039a015

    Article  CAS  Google Scholar 

  32. Palchetti I, Cagnini A, Mascini M, Turner APF (1999) Characterisation of screen-printed electrodes for detection of heavy metals. Mikrochim Acta 131:65–73. doi:10.1007/s006040050010

    Article  CAS  Google Scholar 

  33. Zaouak O, Authier L, Cugnet C, Castetbon A, Potin-Gautier M (2010) Electroanalytical device for cadmium speciation in waters. Part 1: development and characterization of a reliable screen-printed sensor. Electroanalysis 22:1151–1158. doi:10.1002/elan.200900474

    Article  CAS  Google Scholar 

  34. Zaouak O, Authier L, Cugnet C, Normandin E, Champier D, Rivaletto M, Poitn-Gautier M (2010) Electroanalytical device for cadmium speciation in waters. Part 2: automated system development and cadmium semicontinuous monitoring. Electroanalysis 22:1159–1165. doi:10.1002/elan.200900475

    Article  CAS  Google Scholar 

  35. Parat C, Authier L, Betelu S, Petrucciani N, Potin-Gautier M (2007) Determination of labile cadmium using a screen-printed electrode modified by a microwell. Electroanalysis 19:403–406. doi:10.1002/elan.200603734

    Article  CAS  Google Scholar 

  36. Cugnet C, Zaouak O, Rene A, Pecheyran C, Potin-Gautier M, Authier L (2009) A novel microelectrode array combining screen-printing and femtosecond laser ablation technologies: development, characterization and application to cadmium detection. Sensors Actuators B Chem 143:158–163. doi:10.1016/j.snb.2009.07.059

    Article  Google Scholar 

  37. Desmond D, Lane B, Alderman J, Hall G, Alvarez Icaza M, Garde A, Ryan J, Barry L, Svehla G, Arrigan DWM, Schniffner L (1996) An ASIC-based system for stripping voltammetric determination of trace metals. Sens Actuators B 34:466–470. doi:10.1016/S0925-4005(96)01927-2

    Article  CAS  Google Scholar 

  38. Desmond D, Lane B, Alderman J, Hill M, Arrigan DWM, Glennon JD (1998) An environmental monitoring system for trace metals using stripping voltammetry. Sens Actuators B 48:409–414. doi:10.1016/S0925-4005(98)00078-1

    Article  CAS  Google Scholar 

  39. Noh MFM, Tothill IE (2011) Determination of lead(II), cadmium(II) and copper(II) in waste-water and soil extracts on mercury film screen-printed carbon electrodes. Sensor Sains Malays 40:1153–1163

    CAS  Google Scholar 

  40. Choi JY, Seo K, Cho SR, Oh JR, Kahng SH, Park J (2001) Screen-printed anodic stripping voltammetric sensor containing HgO for heavy metal analysis. Anal Chim Acta 443:241–247. doi:10.1016/S0003-2670(01)01219-3

    Article  CAS  Google Scholar 

  41. Palchetti I, Laschi S, Mascini M (2005) Miniaturised stripping-based carbon modified sensor for in field analysis of heavy metals. Anal Chim Acta 530:61–67. doi:10.1016/j.aca.2004.08.065

    Article  CAS  Google Scholar 

  42. Ribeiro LF, Masini JC (2014) Automated determination of Cu(II), Pb(II), Cd(II) and Zn(II) in environmental samples by square wave voltammetry exploiting sequential injection analysis and screen printed electrodes. Electroanalysis 26:2754–2763. doi:10.1002/elan.201400462

    Article  CAS  Google Scholar 

  43. Parat C, Betelu S, Authier L, Potin-Gautier M (2006) Determination of labile trace metals with screen-printed electrode modified by a crown-ether based membrane. Anal Chim Acta 573–574:14–19. doi:10.1016/j.aca.2006.04.081

    Article  Google Scholar 

  44. Betelu S, Parat C, Petrucciani N, Castetbon A, Authier L, Potin-Gautier M (2007) Semicontinuous monitoring of cadmium and lead with a screen-printed sensor modified by a membrane. Electroanalysis 19:399–402. doi:10.1002/elan.200603722

    Article  CAS  Google Scholar 

  45. Song W, Zhang L, ShiL LDW, Li Y, Long YT (2010) Simultaneous determination of cadmium(II), lead(II) and copper(II) by using a screen-printed electrode modified with mercury nano-droplets. Microchim Acta 169:321–326. doi:10.1007/s00604-010-0354-9

    Article  CAS  Google Scholar 

  46. Kachoosangi RT, Banks CE, Ji X, Compton RG (2007) Electroanalytical determination of cadmium(II) and lead(II) using an in-situ bismuth film modified edge plane pyrolytic graphite electrode. Anal Sci 23:283–289. doi:10.2116/analsci.23.283

    Article  Google Scholar 

  47. Wang J, Lu J, Hocevar SB, Farias PAM, Ogorevc B (2000) Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal Chem 72:3218–3222. doi:10.1021/ac000108x

    Article  CAS  Google Scholar 

  48. Economou A (2005) Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TrAC Trends Anal Chem 24:334–340. doi:10.1016/j.trac.2004.11.006

    Article  CAS  Google Scholar 

  49. Svancara I, Prior C, Hocevar SB, Wang J (2010) A decade with bismuth-based electrodes in electroanalysis. Electroanalysis 22:1405–1420. doi:10.1002/elan.200970017

    Article  CAS  Google Scholar 

  50. Serrano N, Alberich A, Díaz-Cruz JM, Ariño C, Esteban M (2013) Coating methods, modifiers and applications of bismuth screen-printed electrodes. TrAC-Trends Anal Chem 46:15–29. doi:10.1016/j.trac.2013.01.012

    Article  CAS  Google Scholar 

  51. Rico MAG, Olivares-Marín M, Gil EP (2008) A novel cell design for the improved stripping voltammetric detection of Zn(II), Cd(II), and Pb(II) on commercial screen-printed strips by bismuth codeposition in stirred solutions. Electroanalysis 20:2608–2613. doi:10.1002/elan.200804360

    Article  CAS  Google Scholar 

  52. Fang HL, Zheng HX, Ou MY, Meng Q, Fan DH, Wang W (2011) One-step sensing lead in surface waters with screen printed electrode. Sensors Actuators B Chem 153:369–372. doi:10.1016/j.snb.2010.10.049

    Article  CAS  Google Scholar 

  53. Tan SN, Ge L, Wang W (2010) Paper disk on screen printed electrode for one-step sensing with an internal standard. Anal Chem 82:8844–8847. doi:10.1021/ac1015062

    Article  CAS  Google Scholar 

  54. Zaouak O, Authier L, Cugnet C, Castetbon A, Potin-Gautier M (2009) Bismuth-coated screen-printed microband electrodes for on-field labile cadmium determination. Electroanalysis 21:689–695. doi:10.1002/elan.200804465

    Article  CAS  Google Scholar 

  55. Serrano N, Díaz-Cruz JM, Ariño C, Esteban M (2010) Ex situ deposited bismuth film on screen-printed carbon electrode: a disposable device for stripping voltammetry of heavy metal ions. Electroanalysis 22:1460–1467. doi:10.1002/elan.200900183

    Article  CAS  Google Scholar 

  56. Lee GJ, Lee HM, Uhm YR, Lee MK, Rhee CK (2008) Square-wave voltammetric determination of thallium using surface modified thick-film graphite electrode with Bi nanopowder. Electrochem Commun 10:1920–1923. doi:10.1016/j.elecom.2008.10.015

    Article  CAS  Google Scholar 

  57. Kadara RO, Tothill IE (2008) Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples. Anal Chim Acta 623:76–81. doi:10.1016/j.aca.2008.06.010

    Article  CAS  Google Scholar 

  58. Kadara RO, Jenkinson N, Banks CE (2009) Disposable bismuth oxide screen printed electrodes for the high throughput screening of heavy metals. Electroanalysis 21:2410–2414. doi:10.1002/elan.200900266

    CAS  Google Scholar 

  59. Khairy M, Kadara RO, Kampouris DK, Banks CE (2010) Disposable bismuth oxide screen printed electrodes for the sensing of zinc in seawater. Electroanalysis 22:1455–1459. doi:10.1002/elan.200900519

    Article  CAS  Google Scholar 

  60. Hwang GH, Han WK, Park JS, Kang SG (2008) An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium. Sensors Actuators B Chem 135:309–316. doi:10.1016/j.snb.2008.08.039

    Article  CAS  Google Scholar 

  61. Niu X, Zhao H, Lan M (2011) Disposable screen-printed bismuth electrode modified with multi-walled carbon nanotubes for electrochemical stripping measurements. Anal Sci: Int J Jpn Soc Anal Chem 27:1237–1241. doi:10.2116/analsci.27.1237

    Article  CAS  Google Scholar 

  62. Lezi N, Kokkinos C, Economou A, Prodromidis MI (2013) Voltammetric determination of trace Tl(I) at disposable screen-printed electrodes modified with bismuth precursor compounds. Sensors Actuators B Chem 182:718–724. doi:10.1016/j.snb.2013.02.110

    Article  CAS  Google Scholar 

  63. Rico MAG, Olivares-Marin M, Gil EP (2009) Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn(II), Cd(II) and Pb(II). Talanta 80:631–635. doi:10.1016/j.talanta.2009.07.039

    Article  Google Scholar 

  64. Sosa V, Serrano N, Ariño C, Díaz-Cruz JM, Esteban M (2014) Sputtered bismuth screen-printed electrode: a promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater. Talanta 119:348–352. doi:10.1016/j.talanta.2013.11.032

    Article  CAS  Google Scholar 

  65. Song YS, Muthuraman G, Chen YZ, Lin CC, Zen JM (2006) Screen printed carbon electrode modified with poly(L-lactide) stabilized gold nanoparticles for sensitive as(III) detection. Electroanalysis 18:1763–1770. doi:10.1002/elan.200603634

    Article  CAS  Google Scholar 

  66. Domínguez O, Arcos J (2007) A novel method for the anodic stripping voltammetry determination of Sb(III) using silver nanoparticle-modified screen-printed electrodes. Electrochem Commun 9:820–826. doi:10.1016/j.elecom.2006.11.016

    Article  Google Scholar 

  67. Laschi S, Palchetti I, Mascini M (2006) Gold-based screen-printed sensor for detection of trace lead. Sensors Actuators B Chem 114:460–465. doi:10.1016/j.snb.2005.05.028

    Article  CAS  Google Scholar 

  68. Noh MFM, Tothill IE (2006) Development and characterisation of disposable gold electrodes, and their use for lead(II) analysis. Anal Bioanal Chem 386:2095–2106. doi:10.1007/s00216-006-0904-5

    Article  CAS  Google Scholar 

  69. Bernalte E, Marin Sanchez C, Pinilla GE (2011) Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal Chim Acta 689:60–64. doi:10.1016/j.aca.2011.01.042

    Article  CAS  Google Scholar 

  70. Wang J, Tian B (1993) Mercury-free disposable lead sensors based on potentiometric stripping analysis of gold-coated screen-printed electrodes. Anal Chem 65:1529–1532. doi:10.1021/ac00059a008

    Article  CAS  Google Scholar 

  71. Wang J, Tian B (1993) Screen-printed electrodes for stripping measurements of trace mercury. Anal Chim Acta 274:1–6. doi:10.1016/0003-2670(93)80599-G

    Article  CAS  Google Scholar 

  72. Mandil A, Idrissi L, Amine A (2010) Stripping voltammetric determination of mercury(II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles. Microchim Acta 170:299–305. doi:10.1007/s00604-010-0329-x

    Article  CAS  Google Scholar 

  73. Niu X, Chen C, Teng Y, Zhao H, Lan M (2012) Novel screen-printed gold nano film electrode for trace mercury(II) determination using anodic stripping voltammetry. Anal Lett 45:764–773. doi:10.1080/00032719.2011.653902

    Article  CAS  Google Scholar 

  74. Punrat E, Chuanuwatanakul S, Kaneta T, Motomizu S, Chailapakul O (2014) Method development for the determination of mercury(II) by sequential injection/anodic stripping voltammetry using an in situ gold-film screen-printed carbon electrode. J Electroanal Chem 727:78–83. doi:10.1016/j.jelechem.2014.05.026

    Article  CAS  Google Scholar 

  75. Masawat P, Liawruangrath S, Slater JM (2003) Flow injection measurement of lead using mercury-free disposable gold-sputtered screen-printed carbon electrodes (SPCE). Sens Actuators B 91:52–59. doi:10.1016/S0925-4005(03)00066-2

    Article  CAS  Google Scholar 

  76. Yerga DM, González García MB, Costa García A (2012) Use of nanohybrid materials as electrochemical transducers for mercury sensors. Sensors Actuators B Chem 165:143–150. doi:10.1016/j.snb.2012.02.031

    Article  Google Scholar 

  77. Domínguez O, Arcos J (2007) Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes. Anal Chim Acta 589:255–260. doi:10.1016/j.aca.2007.02.069

    Article  Google Scholar 

  78. Zhang L, Li DW, SongW SL, Li Y, Long YT (2010) High sensitive on-site cadmium sensor based on AuNPs amalgam modified screen-printed carbon electrodes. IEEE Sensors J 10:1583–1588. doi:10.1109/JSEN.2010.2046408

    Article  CAS  Google Scholar 

  79. Martínez Paredes G, González García MB, Costa García A (2009) Lead sensor using gold nanostructured screen-printed carbon electrodes as transducers. Electroanalysis 21:925–930. doi:10.1002/elan.200804496

    Article  Google Scholar 

  80. Feng W, Hong-Wei L, XinY D-ZC (2013) GS-nafion-Au nanocomposite film modified SPCEs for simultaneous determination of trace Pb2+ and Cd2+ by DPSV. Int J Electrochem Sci 8:7702–7712

  81. Malzahn K, Windmiller JR, Valdés-Ramírez G, Schöning MJ, Wang J (2011) Wearable electrochemical sensors for in situ analysis in marine environments. Analyst 136:2912–2917. doi:10.1039/C1AN15193B

    Article  CAS  Google Scholar 

  82. Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114–5119. doi:10.1021/es0705238

    Article  CAS  Google Scholar 

  83. White BR, Stackhouse BT, Holcombe JA (2009) Magnetic γ-Fe2O3 nanoparticles coated with poly-l-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). J Hazard Mater 161:848–853. doi:10.1016/j.jhazmat.2008.04.105

  84. Honeychurch KC, Hart JP, Cowell DC (2000) Voltammetric behavior and trace determination of lead at a mercury-free screen-printed carbon electrode. Electroanalysis 12:171–177. doi:10.1002/(SICI)1521-4109(200002)12:3<171::AID-ELAN171>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  85. Honeychurch KC, Hawkins DM, Hart JP, Cowell DC (2002) Voltammetric behaviour and trace determination of copper at a mercury-free screen-printed carbon electrode. Talanta 57:565–574. doi:10.1016/S0039-9140(02)00060-7

    Article  CAS  Google Scholar 

  86. Güell R, Aragay G, Fontàs C, Anticò E, Merkoçi A (2008) Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis. Anal Chim Acta 627:219–224. doi:10.1016/j.aca.2008.08.017

    Article  Google Scholar 

  87. Aragay G, Pons J, Merkoçi A (2011) Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. J Mater Chem 21:4326–4331. doi:10.1039/C0JM03751F

  88. Neuhold CG, Wang J, do Nascimento VB, Kalcher K (1995) Thick film voltammetric sensors for trace copper based on a cation-exchanger-modified surface. Talanta 42:1791–1798. doi:10.1016/0039-9140(95)01647-3

    Article  CAS  Google Scholar 

  89. Somerset V, Iwuoha E, Hernandez L (2009) Stripping voltammetric measurement of trace metal ions at screen-printed carbon and carbon paste electrodes. Procedia Chem 1:1279–1282. doi:10.1016/j.proche.2009.07.319

    Article  CAS  Google Scholar 

  90. Somerset V, Leaner J, Mason R, Iwuoha E, Morrin A (2010) Development and application of a poly(2,2′-dithiodianiline) (PDTDA)-coated screen-printed carbon electrode in inorganic mercury determination. Electrochim Acta 55:4240–4246. doi:10.1016/j.electacta.2009.01.029

    Article  CAS  Google Scholar 

  91. Somerset V, Leaner J, Mason R, Iwuoha E, Morrin A (2010) Determination of inorganic mercury using a polyaniline and polyaniline-methylene blue coated screen-printed carbon electrode. Int J Environ Anal Chem 90:671–685. doi:10.1080/03067310902962536

    Article  CAS  Google Scholar 

  92. Khaled E, Hassan HNA, Habib IHI, Metelka R (2010) Chitosan modified screen-printed carbon electrode for sensitive analysis of heavy metals. Int J Electrochem Sci 5:158–167

    CAS  Google Scholar 

  93. Arduini F, Majorani C, Amine A, Moscone D, Palleschi G (2011) Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochim Acta 56:4209–4215. doi:10.1016/j.electacta.2011.01.094

    Article  CAS  Google Scholar 

  94. Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423. doi:10.1016/j.bios.2005.07.012

    Article  CAS  Google Scholar 

  95. Rodríguez BB, Bolbot JA, Tothill IE (2004) Urease–glutamic dehydrogenase biosensor for screening heavy metals in water and soil samples. Anal Bioanal Chem 380:284–292. doi:10.1007/s00216-004-2704-0

    Article  Google Scholar 

  96. Rodríguez BB, Bolbot JA, Tothill IE (2004) Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens Bioelectron 19:1157–1167. doi:10.1016/j.bios.2003.11.002

    Article  Google Scholar 

  97. Ogonczyk D, Tymecki L, Wyzkiewicz I, Koncki R, Glab S (2005) Screen-printed disposable urease-based biosensors for inhibitive detection of heavy metal ions. Sensors Actuators B Chem 106:450–454. doi:10.1016/j.snb.2004.09.005

    Article  CAS  Google Scholar 

  98. Tymecki L, Zwierkowska E, Koncki R (2005) Strip bioelectrochemical cell for potentiometric measurements fabricated by screen-printing. Anal Chim Acta 538:251–256. doi:10.1016/j.aca.2005.02.011

    Article  CAS  Google Scholar 

  99. Domínguez-Renedo O, Alonso-Lomillo MA, Ferreira-Gonçalves L, Arcos-Martínez MJ (2009) Development of urease based amperometric biosensors for the inhibitive determination of Hg (II). Talanta 79:1306–1310. doi:10.1016/j.talanta.2009.05.043

    Article  Google Scholar 

  100. Guascito MR, Malitesta C, Mazzotta E, Turco A (2009) Screen-printed glucose oxidase-based biosensor for inhibitive detection of heavy metal ions in a flow injection system. Sens Lett 7:153–159. doi:10.1166/sl.2009.1026

    Article  CAS  Google Scholar 

  101. Sanllorente-Méndez S, Domínguez-Renedo O, Arcos-Martínez MJ (2010) Immobilization of acetylcholinesterase on screen-printed electrodes. Application to the determination of arsenic(III). Sensors 10:2119–2128. doi:10.3390/s100302119

    Article  Google Scholar 

  102. Wajrak M (2008) Infield detection of arsenic using portable digital voltameter, PDV6000. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, Boca Raton, p 245

    Google Scholar 

  103. Fu C, Fang J, Wu S (2013) Detection of cadmium in foods by HM-3000P based on the anodic stripping voltammetry. Modern Scientific Instruments 1:003

  104. Ferrer-Sánchez MI, Bautista-Margulis RG, López-Hernández ES, Vázquez-Botello A, López-Ocaña G, Juárez-García M, Ramírez-Alejandre AA (2014) Environmental restoration and management of the Seco River in Tabasco, Southern coast of the Gulf of Mexico. In: Brebbia CA (ed) Water pollution XII. WIT Press, Southampton, p 365

    Chapter  Google Scholar 

  105. Cases-Utrera J, Escudé-Pujol R, Ibáñez-Otazua N, Javier del Campo F (2015) Development of an automated heavy metal analyser. Electroanalysis 27:929–937. doi:10.1002/elan.201400614

    Article  CAS  Google Scholar 

  106. Cleary J, McCaul M, Diamond D, García MBG, Díez C et al (2014) COMMON SENSE: Cost-effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements. In: Proc IEEE Sensor Systems for a Changing Ocean, SSCO 2014; Brest; France. Article number 7000384. doi: 10.1109/SSCO.2014.7000384

  107. Ribotti A, Borghini M, Schroeder K, Barton J, McCaul M, Diamond D, Magni P (2015) New cost-effective, interoperable sensors tested on existing ocean observing platforms in application of European directives. In: Proc MTS/IEEE OCEANS 15, Genova, Italy, May 18-21, 2015

Download references

Acknowledgments

We gratefully acknowledge funding received from the European Union’s Seventh Framework Programme (FP7) for research, technological development and demonstration (OCEAN 2013.2) under grant agreement No. 614155 [106, 107].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Magni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, J., García, M.B.G., Santos, D.H. et al. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim Acta 183, 503–517 (2016). https://doi.org/10.1007/s00604-015-1651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1651-0

Keywords

Navigation