Skip to main content
Log in

Magnetic solid-phase extraction of trace-level mercury(II) ions using magnetic core-shell nanoparticles modified with thiourea-derived chelating agents

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a method for magnetic solid phase extraction of trace-levels of Hg(II) ions by using Fe3O4 nanoparticles (NPs) covered with a shell of silica and modified with the chelator N-(2-acetylaminoethyl)-N′-(3-triethoxysilylpropyl)thiourea. The new magnetic NPs enable rapid magnetic separation, thus leading to higher efficiency and accuracy. The extracted Hg(II) ions on the NPs were  directly quantified using a mercury analyzer. Possible interferents are widely eliminated in this highly selective extraction process, and the NPs are not exerting an interfering effect either. The method has an enrichment factor of 100, and extraction recoveries are between 95 and 107 % when using 10 mg of the extracting NPs. The method works over a wide range of pH values and can be applied to even complex natural samples. The effects of pH value, extraction time, sample volume and adsorbent amount on the extraction efficiency were optimized. Under the optimal conditions, the detection limit is as low as 17 ng L−1. The method was applied to the preconcentration and detection of Hg(II) in three natural water samples using the standard addition method.

A facile magnetic solid phase extraction using surface decorated nano-scale magnetic core-shell nanoparticles coupled with a direct mercury analyzer is proposed for trace-level mercury ions detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293. doi:10.1080/20016491089226

    Article  CAS  Google Scholar 

  2. Date Y, Aota A, Terakado S, Sasaki K, Matsumoto N, Watanabe Y, Matsue T, Ohmura N (2013) Trace-level mercury Ion (Hg2+) analysis in aqueous sample based on solid-phase extraction followed by microfluidic immunoassay. Anal Chem 85(1):434–440. doi:10.1021/Ac3032146

    Article  CAS  Google Scholar 

  3. Margetinova J, Houserova-Pelcova P, Kuban V (2008) Speciation analysis of mercury in sediments, zoobenthos and river water samples by high-performance liquid chromatography hyphenated to atomic fluorescence spectrometry following preconcentration by solid phase extraction. Anal Chim Acta 615(2):115–123. doi:10.1016/j.aca.2008.03.061

    Article  CAS  Google Scholar 

  4. Alcalde-Molina M, Ruiz-Jimenez J, de Castro MDL (2009) Automated determination of mercury and arsenic in extracts from ancient papers by integration of solid-phase extraction and energy dispersive X-ray fluorescence detection using a lab-on-valve system. Anal Chim Acta 652(1–2):148–153. doi:10.1016/j.aca.2009.05.034

    Article  CAS  Google Scholar 

  5. Jiang Y, Zhang HT, He Q, Hu Z, Chang XJ (2012) Selective solid-phase extraction of trace mercury(II) using a silica gel modified with diethylenetriamine and thiourea. Microchim Acta 178(3–4):421–428. doi:10.1007/s00604-012-0858-6

    Article  CAS  Google Scholar 

  6. Ma XG, Huang B, Cheng MQ (2007) Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry. Rare Metals 26(6):541–546. doi:10.1016/S1001-0521(08)60004-2

    Article  CAS  Google Scholar 

  7. Soleimani M, Mahmodi MS, Morsali A, Khani A, Afshar MG (2011) Using a new ligand for solid phase extraction of mercury. J Hazard Mater 189(1–2):371–376. doi:10.1016/j.jhazmat.2011.02.047

    Article  CAS  Google Scholar 

  8. Turker AR (2007) New sorbents for solid-phase extraction for metal enrichment. Clean-Soil Air Water 35(6):548–557. doi:10.1002/clen.200700130

    Article  CAS  Google Scholar 

  9. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181(11–12):1169–1190. doi:10.1007/s00604-014-1265-y

    Article  CAS  Google Scholar 

  10. Mureseanu M, Reiss A, Cioatera N, Trandafir I, Hulea V (2010) Mesoporous silica functionalized with 1-furoyl thiourea urea for Hg(II) adsorption from aqueous media. J Hazard Mater 182(1–3):197–203. doi:10.1016/j.jhazmat.2010.06.015

    Article  CAS  Google Scholar 

  11. Mercader-Trejo F, Herrera-Basurto R, de San Miguel ER, de Gyves J (2011) Mercury determination in sediments by CVAAS after on line preconcentration by solid phase extraction with a sol–gel sorbent containing CYANEX 471X®. Int J Environ Anal Chem 91(11):1062–1076. doi:10.1080/03067311003782658

    Article  CAS  Google Scholar 

  12. Li X, Zenobi R (2013) Use of polyetheretherketone as a material for solid phase extraction of hydroxylated metabolites of polycyclic aromatic hydrocarbons in human urine. Anal Chem 85(7):3526–3531. doi:10.1021/Ac303402s

    Article  CAS  Google Scholar 

  13. Liu Y, Li Y, Yan XP (2008) Preparation, characterization, and application of L-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv Funct Mater 18(10):1536–1543. doi:10.1002/adfm.200701433

    Article  CAS  Google Scholar 

  14. Giakisikli G, Anthemidis AN (2013) Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta 789:1–16. doi:10.1016/j.aca.2013.04.021

    Article  CAS  Google Scholar 

  15. He H, Xiao D, He J, Li H, He H, Dai H, Peng J (2014) Preparation of a core-shell magnetic ion-imprinted polymer via a sol–gel process for selective extraction of Cu(II) from herbal medicines. Analyst 139(10):2459–2466. doi:10.1039/c3an02096g

    Article  CAS  Google Scholar 

  16. Wang Y, Xie J, Wu YC, Hu XY, Yang C, Xu Q (2013) Determination of trace amounts of Se(IV) by hydride generation atomic fluorescence spectrometry after solid-phase extraction using magnetic multi-walled carbon nanotubes. Talanta 112:123–128. doi:10.1016/j.talanta.2013.03.014

    Article  CAS  Google Scholar 

  17. Wang Y, Xie J, Wu YC, Hu XY (2014) A magnetic metal-organic framework as a new sorbent for solid-phase extraction of copper(II), and its determination by electrothermal AAS. Microchim Acta 181(9–10):949–956. doi:10.1007/s00604-014-1183-z

    Article  CAS  Google Scholar 

  18. Wei SL, Liu Y, Shao MD, Liu L, Wang HW, Liu YQ (2014) Preparation of magnetic Pb(II) and Cd(II) ion-imprinted microspheres and their application in determining the Pb(II) and Cd(II) contents of environmental and food samples. RSC Adv 4(56):29715–29723. doi:10.1039/C4ra01948b

    Article  CAS  Google Scholar 

  19. Sohrabi MR, Matbouie Z, Asgharinezhad AA, Dehghani A (2013) Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim Acta 180(7–8):589–597. doi:10.1007/s00604-013-0952-4

    Article  CAS  Google Scholar 

  20. Lee HY, Bae DR, Park JC, Song H, Han WS, Jung JH (2009) A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew Chem Int Ed 48(7):1239–1243. doi:10.1002/anie.200804714

    Article  CAS  Google Scholar 

  21. Chen H, Deng C, Zhang X (2010) Synthesis of Fe(3)O(4)@SiO(2)@PMMA core-shell-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-ToF MS analysis. Angew Chem Int Ed 49(3):607–611. doi:10.1002/anie.200904885

    Article  CAS  Google Scholar 

  22. Cui Y, Liu S, Hu ZJ, Liu XH, Gao HW (2011) Solid-phase extraction of lead(II) ions using multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine. Microchim Acta 174(1–2):107–113. doi:10.1007/s00604-011-0601-8

    Article  CAS  Google Scholar 

  23. Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC (2010) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26(3):1674–1679. doi:10.1021/La902635k

    Article  CAS  Google Scholar 

  24. Liu B, Zeng F, Wu G, Wu S (2011) A FRET-based ratiometric sensor for mercury ions in water with multi-layered silica nanoparticles as the scaffold. Chem Commun (Camb) 47(31):8913–8915. doi:10.1039/c1cc12544c

    Article  CAS  Google Scholar 

  25. Liu B, Zeng F, Wu G, Wu S (2012) Nanoparticles as scaffolds for FRET-based ratiometric detection of mercury ions in water with QDs as donors. Analyst (Cambridge, U K) 137(16):3717–3724. doi:10.1039/c2an35434a

    Article  CAS  Google Scholar 

  26. Ziaei E, Mehdinia A, Jabbari A (2014) A novel hierarchical nanobiocomposite of graphene oxide–magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples. Anal Chim Acta 850:49–56. doi:10.1016/j.aca.2014.08.048

    Article  CAS  Google Scholar 

  27. Adlnasab L, Ebrahimzadeh H, Asgharinezhad AA, Aghdam MN, Dehghani A, Esmaeilpour S (2014) A preconcentration procedure for determination of ultra-trace mercury (II) in environmental samples employing continuous-flow cold vapor atomic absorption spectrometry. Food Anal Methods 7(3):616–628

    Article  Google Scholar 

  28. Moreno F, García-Barrera T, Gómez-Ariza JL (2013) Simultaneous speciation and preconcentration of ultra trace concentrations of mercury and selenium species in environmental and biological samples by hollow fiber liquid phase microextraction prior to high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J Chromatogr A 1300:43–50

    Article  CAS  Google Scholar 

  29. Mashhadizadeh MH, Amoli-Diva M, Shapouri MR, Afruzi H (2014) Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles. Food Chem 151:300–305. doi:10.1016/j.foodchem.2013.11.082

    Article  CAS  Google Scholar 

  30. Gao R, Hu Z, Chang X, He Q, Zhang L, Tu Z, Shi J (2009) Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples. J Hazard Mater 172(1):324–329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Foundation of State Key Laboratory of Pollution Control and Resource Reuse, China (NO.PCRRF13024). Swedish Government Strategic Faculty Grant in Material Science (SFO, MATLIU) in Advanced Functional Materials (Faculty Grant SFO-Mat-LiU#2009-00971) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangjun Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Liu, S., Wei, K. et al. Magnetic solid-phase extraction of trace-level mercury(II) ions using magnetic core-shell nanoparticles modified with thiourea-derived chelating agents. Microchim Acta 182, 1337–1344 (2015). https://doi.org/10.1007/s00604-015-1452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1452-5

Keywords

Navigation