Skip to main content
Log in

Ultrasensitive electrochemical supersandwich DNA biosensor using a glassy carbon electrode modified with gold particle-decorated sheets of graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a supersandwich type of electrochemical DNA biosensor based on the use of a glassy carbon electrode (GCE) modified with reduced graphene oxide (rGO) sheets that are decorated with gold nanoparticles (Au NPs). Thiolated capture DNA (probe DNA) was covalently linked to the Au NPs on the surface of the modified GCE via formation of Au-S bonds. In presence of target DNA, its 3′ terminus hybridizes with capture probe and the 5′ terminus hybridizes with signal probe labeled with Methylene Blue (MB). On increasing the concentration of target DNA, hybridization between signal probe and target DNA results in the formation of three different DNA sequences that form a supersandwich structure. The signal intensity of MB improves distinctly with increasing concentrations of target DNA in the sample solution. The assembling process on the surface of the electrode was studied by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used to monitor the hybridization event by measuring the changes in the peak current for MB. Under optimal conditions, the peak currents in DPV for MB linearly increase with the logarithm of target DNA concentration in the range from 0.1 μM to1.0 fM, with a detection limit of 0.35 fM (at an signal/noise ratio of 3). This biosensor exhibits good selectivity, even over single-base mismatched target DNA.

We designed a sensitive supersandwich electrochemical DNA biosensor based on rGO sheets decorated with Au NPs. SEM and electrochemical methods were employed to investigate the assembly process of the biosensor. The biosensor exhibits high sensitivity and good specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geng P, Zhang XN, Teng YQ, Fu Y, Xu LL, Xu M, Jin LT, Zhang W (2011) A DNA sequence-specific electrochemical biosensor based on alginic acid-coated cobalt magnetic beads for the detection of E. coli. Biosens Bioelectron 26:3325

    Article  CAS  Google Scholar 

  2. Wang QX, Ding YT, Wang LH, Gao C, Gao F, Gao F (2012) Highly selective DNA biosensor based on the long-range electron transfer of indigo carmine through DNA duplex. Microchim Acta 179:273–281

    Article  CAS  Google Scholar 

  3. Balapanuru J, Yang JX, Xiao S, Bao QL, Jahan M, Polavarapu L, Wei J, Xu QH, Loh KP (2010) A graphene oxide–organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed 49:6549

    Article  CAS  Google Scholar 

  4. Wang J, Li JH, Baca AJ, Hu JB, Zhou FM, Yan W, Pang DW (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945

    Article  CAS  Google Scholar 

  5. Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, Fan CH (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128:8575–8580

    Article  CAS  Google Scholar 

  6. Ding CF, Zhang Q, Lin JM, Zhang SS (2009) Electrochemical detection of DNA hybridization based on bio-bar code method. Biosens Bioelectron 24:3140–3143

    Article  CAS  Google Scholar 

  7. Hu K, Lan D, Li X, Zhang S (2008) Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal Chem 80:9124–9130

    Article  CAS  Google Scholar 

  8. Erdem A (2007) Nanomaterial-based electrochemical DNA sensing strategies. Talanta 74:318–325

    Article  CAS  Google Scholar 

  9. Gooding JJ (2002) Electrochemical DNA hybridization biosensors. Electroanalysis 14:1149–1156

    Article  CAS  Google Scholar 

  10. Castañeda MT, Alegret S, Merkoci A (2007) Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis 19:743–753

    Article  Google Scholar 

  11. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  12. Daniel S, Rao TP, Rao KS, Rani SU, Naidu GRK, Lee HY, Kawai T (2007) A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sensors Actuators B 122:672–682

    Article  CAS  Google Scholar 

  13. Ricci F, Plaxco KW (2008) E-DNA sensors for convenient, label-free electrochemical detection of hybridization. Microchim Acta 163:149–155

    Article  CAS  Google Scholar 

  14. Xiao Y, Lubin AA, Baker BR, Plaxco KW, Heeger AJ (2006) Single-step electronic detection of femtomolar DNA by target induced strand displacement in an electrode-bound duplex. Proc Natl Acad Sci U S A 103:16677

    Article  CAS  Google Scholar 

  15. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  Google Scholar 

  16. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199

    Article  CAS  Google Scholar 

  17. Immoos CE, Lee SJ, Grinstaff MW (2004) DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. J Am Chem Soc 126:10814–10815

    Article  CAS  Google Scholar 

  18. Wan Y, Zhang J, Liu G, Pan D, Wang LH, Song SP, Fan CH (2009) Ligase-based multiple DNA analysis by using an electrochemical sensor array. Biosens Bioelectron 24:1209–1212

    Article  CAS  Google Scholar 

  19. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  20. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  21. Chu X, Fu X, Chen K, Shen GL, Yu RQ (2005) An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosens Bioelectron 20:1805–1812

    Article  CAS  Google Scholar 

  22. Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75:2075–2079

    Article  CAS  Google Scholar 

  23. Chen RS, Huang WH, Tong H, Wang ZL, Cheng JK (2003) Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Anal Chem 75:6341–6345

    Article  CAS  Google Scholar 

  24. Campbell CN, Gal D, Cristler N, Banditrat C, Heller A (2002) Enzyme-amplified amperometric sandwich test for RNA and DNA. Anal Chem 74:158–162

    Article  CAS  Google Scholar 

  25. Patolsky F, Katz E, Bardea A, Willner I (1999) Enzyme-linked amplified electrochemical sensing of oligonucleotide-DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 15:3703–3706

    Article  CAS  Google Scholar 

  26. Alfonta L, Bardea A, Khersonsky O, Katz E, Willner I (2001) Chronopotentiometry and faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. Biosens Bioelectron 16:675–687

    Article  CAS  Google Scholar 

  27. Xia F, White RJ, Zuo XL, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346–14348

    Article  CAS  Google Scholar 

  28. Chen X, Lin YH, Li J, Lin LS, Chen GN, Yang HH (2011) A simple and ultrasensitive electrochemical DNA biosensor based on DNA concatamers. Chem Commun 47:12116–12118

    Article  CAS  Google Scholar 

  29. Du P, Li HX, Cao W (2009) Construction of DNA sandwich electrochemical biosensor with nanoPbS and nanoAu tags on magnetic microbeads. Biosens Bioelectron 24:3223–3228

    Article  CAS  Google Scholar 

  30. Yin BC, Guan YM, Ye BC (2012) An ultrasensitive electrochemical DNA sensor based on the ssDNA-assisted cascade of hybridization reaction. Chem Commun 48:4208–4210

    Article  CAS  Google Scholar 

  31. Wang J, Li JH, Baca AJ, Hu JB, Zhou FM, Yan W, Pang DW (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No.20675002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 904 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Shi, A., Fang, X. et al. Ultrasensitive electrochemical supersandwich DNA biosensor using a glassy carbon electrode modified with gold particle-decorated sheets of graphene oxide. Microchim Acta 181, 935–940 (2014). https://doi.org/10.1007/s00604-014-1182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1182-0

Keywords

Navigation