Skip to main content
Log in

Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a simple, green and controllable approach for electrochemical synthesis of a nanocomposite made up from electrochemically reduced graphene oxide (ERGO) and gold nanoparticles. This material possesses the specific features of both gold nanoparticles and graphene. Its morphology was characterized by scanning electron microscopy which reveals a homogeneous distribution of gold nanoparticles on the graphene sheets. Cyclic voltammetry was used to evaluate the electrochemical properties of this nanocomposite towards dopamine by modification of it on surface of glassy carbon electrode (GCE). Compared to the bare GCE, the electrode modified with gold nanoparticles, and the electrode modified with ERGO, the one modified with the nanocomposite displays better electrocatalytic activity. Its oxidation peak current is linearly proportional to the concentration of dopamine (DA) in the range from 0.1 to 10 μM, with a detection limit of 0.04 μM (at S/N = 3). The modified electrode also displays good storage stability, reproducibility, and selectivity.

Electrochemical reduced graphene oxide (ERGO) before and after electrochemical deposition of Au nanoparticles. Au nanoparticles with diameters of about 40–50 nm integrate uniformly with the ERGO. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear range, excellent selectivity and sensitivity to DA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heien M, Khan A, Ariansen J, Cheer J, Phillips P, Wassum K, Wightman M (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci USA 102:10023–10028

    Article  CAS  Google Scholar 

  2. Wiedemann DJ, Kawagoe KT, Kennedy RT, Ciolkowski EL, Wightman RM (1991) Strategies for low detection limit measurements with cyclic voltammetry. Anal Chem 63:2965–2970

    Article  CAS  Google Scholar 

  3. Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108:2554–2584

    Article  CAS  Google Scholar 

  4. Yin H, Shang K, Meng X, Ai S (2011) Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide. Microchim Acta 175:39–46

    Article  CAS  Google Scholar 

  5. Luczak T, Bełtowska-Brzezinska M (2011) Gold electrodes modified with gold nanoparticles and thio compounds for electrochemical sensing of dopamine alone and in presence of potential interferents. A comparative study (2011). Microchim Acta 174:19–30

    Article  CAS  Google Scholar 

  6. Lai GS, Zhang HL, Han DY (2008) Electrocatalytic oxidation and voltammetric determination of dopamine at a Nafion/carbon-coated iron nanoparticles-chitosan composite film modified electrode. Microchim Acta 160:233–239

    Article  CAS  Google Scholar 

  7. Chang HY, Kim DI, Park YC (2006) Electrochemically degraded dopamine film for the determination of dopamine. Electroanalysis 18:1578–1583

    Article  CAS  Google Scholar 

  8. Li J, Chen J, Zhang X (2011) Determination of dopamine with improved sensitivity by exploiting an accumulation effect at a nano-gold electrode modified with poly(sulfosalicylic acid). Microchim Acta 174:345–352

    Article  CAS  Google Scholar 

  9. Hou S, Kasner ML, Su S, Patel K, Cuellari R (2010) Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. J Phys Chem C 114:14915–14921

    CAS  Google Scholar 

  10. Wang X, Zhi L, Tsao N (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chem Int Ed 47:2908–2909

    Article  Google Scholar 

  11. Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable Lithium ion batteries. Nano Lett 8:2277–2282

    Article  CAS  Google Scholar 

  12. Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K, Zhuo X (2010) A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169:1–6

    Article  CAS  Google Scholar 

  13. Kang X, Wang J, Wu H, Liu J, Aksayc IA, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  CAS  Google Scholar 

  14. Fang Y, Guo S, Zhu C, Zhai Y, Wang E (2010) Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: a two-dimensional heterostructure for hydrogen peroxide sensing. Langmuir 26:11277–11282

    Article  CAS  Google Scholar 

  15. Cao L, Liu Y, Zhang B, Lu L (2010) In situ controllable growth of prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. Appl Mater Interfaces 2:2339–2346

    Article  CAS  Google Scholar 

  16. Zhang F, Li Y, Gu Y, Wang Z, Wang C (2011) One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta 173:103–109

    Article  CAS  Google Scholar 

  17. Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano 4:4001–4010

    Article  CAS  Google Scholar 

  18. Bong S, Kim YR, Kim I, Woo S, Uhm S, Lee J, Kim H (2010) Graphene supported electrocatalysts for methanol oxidation. Electrochem Commun 12:129–131

    Article  CAS  Google Scholar 

  19. Hu Y, Jin J, Wu P, Zhang H, Cai C (2010) Graphene–gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation. Electrochim Acta 56:491–500

    Article  CAS  Google Scholar 

  20. Yang J, Deng S, Lei J, Ju H, Gunasekarana S (2011) Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens Bioelectron 29:159–166

    Article  CAS  Google Scholar 

  21. Xue Y, Zhao H, Wu Z, Li X, He Y, Yuan Z (2011) The comparison of different gold nanoparticles/graphene nanosheets hybrid nanocomposites in electrochemical performance and the construction of a sensitive uric acid electrochemical sensor with novel hybrid nanocomposites. Biosens Bioelectron 29:102–108

    Article  CAS  Google Scholar 

  22. Zhang Y, Kang TF, Wan YW, Chen SY (2009) Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchim Acta 165:307–311

    Article  CAS  Google Scholar 

  23. Zhou K, Zhu Y, Yang X, Li C (2010) Electrocatalytic oxidation of glucose by the glucose oxidase immobilized in graphene-Au-nafion biocomposite. Electroanalysis 22:259–264

    Article  Google Scholar 

  24. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  25. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  26. Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  27. Wang G, Sun J, Zhang W, Jiao S, Fang B (2009) Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchim Acta 164:357–362

    Article  CAS  Google Scholar 

  28. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Grants from the Natural Science Foundation of China (NSFC, No. 21105002), Anyang Technology Research Program (No 208) and the Innovative Foundation for the College students of Anyang Normal University (ASCX/2011-Z12)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Juan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.05 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SJ., Deng, DH., Shi, Q. et al. Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Microchim Acta 177, 325–331 (2012). https://doi.org/10.1007/s00604-012-0782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0782-9

Keywords

Navigation